Commande d'un servomoteur avec le Raspberry Pi

http://www.hertaville.com/rpipwm.html http://wiringpi.com/reference/raspberry-pi-specifics/ https://learn.adafruit.com/adafruits-raspberry-pi-lesson-8-using-a-servo-motor/software https://raspberrypi.stackexchange.com/questions/11813/controlling-a-servo-with-hardware-pwm-using-wiringpi https://raspberrypi.stackexchange.com/questions/4906/control-hardware-pwm-frequency

Pour gérer les ports GPIO, plusieurs bibliothèques ont été développées. Sur la version de Raspbian que vous utilisez, c'est *wiringpi* qui a été installée. Vous trouverez les détails pour l'installation et l'utilisation sur http://wiringpi.com/

Le PWM

Le PWM (*Pulse Width Modulation*) ou MLI en français (Modulation de Largeur d'Impulsions) consiste à faire varier le rapport cyclique d'un signal de période fixe.

Temps

Sur le signal représenté ci-dessus, de rapport cyclique 25% la période est divisée en Ton (25% de la période) et Toff (75% de la période).

Tester le PWM avec une diode LED

Connecter la LED au GPIO 18 (broche 12). C'est cette broche du Raspberry Pi qui est connectée à un circuit PWM hardware.

Le programme ci-dessous cde_LED_PWM.sh permet de tester le bon fonctionnement de la sortie PWM. Les détails seront donnés plus loin dans ce document.

```
#!/bin/sh
# Passer le GPIO 18 en sortie, mode PWM hardware
gpio -g mode 18 pwm
# Utiliser le mode PWM Mark/space
gpio pwm-ms
# Configurer pwmClock et pwm Range
gpio pwmc 192
gpio pwmr 2000
#Mettre la sortie PWM à zéro
gpio -g pwm 18 0
while true
do
    x=0
    while [ $x -lt 2000 ]
        do
        gpio -g pwm 18 $x
        x=$((x+100))
        echo $x
        sleep 0.02
        done
    while [ $x -gt 0 ]
        do
        gpio -g pwm 18 $x
        x=$((x-100))
        echo $x
        sleep 0.02
        done
```

done

Vérifiez que la luminosité de la LED varie continument. Faites varier les paramètres.

Servomoteur

Un servomoteur est un système utilisé dans de nombreuses applications industrielles.

Il existe des servomoteurs de taille réduite, réservés à des utilisations ne demandant pas un couple important. On retrouve cette famille de servomoteurs miniatures dans les modèles réduits (voitures, avions, hélicoptères...)

C'est un de ces modèles que nous allons utiliser avec le Raspberry Pi

Hardware ou software?

Le Raspberry Pi possède une seule sortie commandée par un système intégré. 18 – Broche 12 du connecteur GPIO. assure un fonctionnement normal du sont des registres qui programmés et

hardware qui fournissent le signal en sortie. Le PWM Hardware possède deux modes de fonctionnement : Balanced et Mark/Space. Ce dernier mode fournit un signal régulier répondant à notre cahier des charges, c'est lui que nous utiliserons.

Il est possible de dédier les autres sorties GPIO au PWM. La gestion est alors assurée par logiciel. Le noyau Linux utilisé n'étant pas « Temps réel », la régularité du signal est perturbée par le partage des ressources au niveau du processeur. On voit alors apparaître du « jitter » (légères variations du signal : fréquence et rapport cyclique) ce qui va se traduire par de petits mouvements ou des vibrations en sortie de servo.

Nous utiliserons donc le mode PWM hardware pour cette réalisation. Si plusieurs servomoteurs doivent être pilotés par le Raspberry Pi, il existe par exemple des cartes capables de piloter 16 servomoteurs en 12 bits (<u>https://www.adafruit.com/product/815</u>). Ce type de carte permet de gérer chaque servomoteur avec un PWM hardware, donc sans jitter.

Commande du servomoteur

Les servomoteurs utilisés en radiomodélisme sont commandés par un signal à 50 Hz (période = 20ms). La position de l'axe du servomoteur est asservie à la largeur du créneau positif du signal.

- 1 ms l'axe est en butée dans le sens antihoraire
- 1,5 ms l'axe est positionné au centre de la course
- 2 ms l'axe est en butée dans le sens horaire

Connexion du servomoteur

Les servomoteurs sont équipés de prises à 3 contacts. En fonction de la marque, les couleurs de fils peuvent différer. Il n'y a pas de norme à ce sujet.

Il faut donc se reporter à la documentation du fournisseur.

(source mchobby.be)

En général on trouve :

- Brun ou noir = MASSE/GND (borne négative de l'alimentation)
- Rouge = alimentation du servomoteur (Vservo, borne positive de l'alimentation)
- Orange, jaune, blanc ou bleu = Commande de position du servomoteur

Connexion au Raspberry Pi

ATTENTION : L'invertion de la tension d'alimentation sur le servomoteur provoque sa destruction !

Le Raspberry Pi dispose d'une seule broche (12 sur le connecteur GPIO) permettant un PWM Hardware.

Nota1 : L'alimentation 5v du Raspberry Pi n'est pas prévue pour alimenter un servomoteur. Il faudrait en principe alimenter le servo par une alimentation séparée. Cependant pour un modèle miniature, le débit du 5v est suffisant.

Nota 2 : Le servomoteur est alimenté en 5 v et le signal devrait avoir une tension de 5v également. La sortie GPIO du Raspberry Pi est à 3,3v. Elle est cependant suffisante pour commander le servomoteur. *En production, il conviendrait d'intercaler un changeur de niveau.*

Test du servomoteur en ligne de commande

Dans un premier temps nous allons vérifier le bon fonctionnement du servo moteur en ligne de commande.

Passer le GPIO 18 en sortie, mode PWM hardware pi@raspberrypi:~ \$ gpio -g mode 18 pwm

Utiliser le mode PWM Mark/space

pi@raspberrypi:~ \$ gpio pwm-ms

La relation entre les différents paramètres est la suivante : (page 139 de la doc technique http://www.element14.com/community/servlet/JiveServlet/downloadBody/43016-102-1-231518/Broadcom.Datasheet.pdf) pwmFrequency in Hz = 19.2 MHz / pwmClock / pwmRange

Configurer pwmClock et pwm Range

pi@raspberrypi:~ \$ gpio pwmc 192 pi@raspberrypi:~ \$ gpio pwmr 2000

soit 19.2 x 10^6 / 192 / 2000 = 50 Hz => 20 ms (c'est la période attendue par le servomoteur)

Mettre la sortie du servomoteur au centre : pi@raspberrypi:~ \$ gpio -g pwm 18 150

Mettre la sortie du servomoteur à droite : pi@raspberrypi:~ \$ gpio -g pwm 18 50

Mettre la sortie du servomoteur à gauche : pi@raspberrypi:~ \$ gpio -g pwm 18 200

La plage utilisable sans emmener le servomoteur en butée va de 60 à 240. Le centre du déplacement reste donc 60 + 240 / 2 = 150

Exercice : Relevez les valeurs pour lesquelles le servomoteur se positionne à 0° , $+90^\circ$ et -90° Charger le script shell *servo.sh* qui automatise le test du servomoteur en le faisant se déplacer d'une butée à l'autre répétitivement (5 fois par exemple). Modifiez-le pour que les limites de déplacement coïncident avec les valeurs limites que vous avez relevées manuellement. Il faut rendre le script exécutable (chmod 755 servo.sh) puis le lancer (./servo.sh).

Analysez le contenu du script et modifier le nombre de déplacements et/ou la vitesse de rotation.

Commande manuelle de servo

Réalisez un script shell *cde_servo.sh* qui commande un servomoteur avec les touches du pavé numérique

Ce script utilise les commandes en ligne de wiring pi

Au lancement du programme le servomoteur se positionne au milieu

Les touches 1 et 2 font tourner le moteur jusqu'à la butée (relevée précédemment) 1 à gauche 2 à droite q ou Q pour quitter et remettre le servomoteur au milieu de sa course

Mise en pratique :

Modifiez le script pour commander le servomoteur à partir d'un ou deux boutons poussoir. Ecrivez votre cahier des charges (qu'est-ce que fait le programme, quelles sont les entrées et les sorties, comment on sort du script)