
Issue 2
October 2018

The Unofficial micro:bit
Community Magazine

Scratch Interview
We interview 2 members of the
Scratch team!

cube:bit Review
Turn your micro:bit into a shiny
3D cube with a new board

Global Challenge
Solve a problem in your
community with the new
micro:bit challenge!

Make your own Blocks!

Scratch for
Learn all about the new micro:bit features in

Scratch 3.0!

Make your own MakeCode blocks
with our easy to use beginners
guide.

Could you help
achieve the Global

Goals?
We’re setting you the biggest

coding challenge yet!
You could win an all expenses paid trip to London to

take part in an amazing micro:bit Global Challenge day
with winners from around the world!

The competition is open to young people across the
world.

Visit our website now for more details on how to enter:
microbit.org/global-challenge

Welcome to Issue 2

Hi
there. I’m delighted to
be able to welcome
you to Issue 2 of
micro:mag.

Following the major success of
Issue 1, we’re happy to bring
you an improved Issue 2
covering lots of news, projects,
tutorials and reviews.

This issues focus is Scratch
3.0, which is the new version of
Scratch due to be released in
January. The exciting thing
about this new version of
Scratch is it’s compatibility of
the micro:bit, the new
extension in Scratch 3 allows
you to connect up your
micro:bit with your Scratch
projects to bring them into the
physical world. We’ve got
articles dedicated to Scratch 3
in a brand new cover feature,
you can expect articles like
making a games controller, the

basics of scratch 3, a Scratch
team interview and much
more.

We’re also excited to bring you
an improved design for Issue 2
in which we’ve incorporated
feedback from our readers, we
hope you like it as much as we
do.

Issue 2 spreads across an
impressive 96 pages of content
from our community
contributors, we really couldn’t
do it without them. We’re now
looking for contributors for
Issue 3 which is due to be
released in January. If you’d
like to write for us, please do
fill in the form over at
micromag.cc/contribute.

That’s it from me so grab a
seat, a brew and tuck into
Issue 2, we hope you enjoy it!

Joshua Lowe
Editorial Team

Team

Editor in Chief
Kerry Kidd

Editorial team
Joshua Lowe
Archie Roques
Thomas Bass

Contributors

Giles Booth
Shenali Welkala
Michael Rimicans
Eric Roseenbaum
Kreg Hanning
Eileen King
Thomas Stratford
Alan Yorrinks
Soibheann Morgan
Martin Woolley
Nicole Parrot
Jody Carter
Sam Watson
Davit Markarian
Les Pounder
Hal Speed
Warris Candra
Rachel Lancaster
Jose Scodiero
Daniel Pers
Chris Penn
Areej Abdullah Alghamdi
John Lynch

Contact us:

Website: micromag.cc

Email: hello@micromag.cc

Twitter: @micro_mag

Meet the team

Kerry Kidd is a freelance programmer/educator who
enjoys writing tutorials and tinkering with
the micro:bit

Archie Roques makes lots of different things, from
circuit boards to tables. Some of them even work!

Joshua Lowe is a young coder, creator of the
Edublocks tool for micro:bit and has done lots of
workshops around the world.

4

Cover Feature:
Scratch meets
micro:bit

Page 19

Create your own
MakeCode
Blocks

Page 54

micro:hit -
Countdown Timer

Page 82

Global Challenge

Page 9

:news

Mu V1.0 is here
Beginners Python IDE is here6

Cover Feature

What’s new in Scratch 3.0?
Rundown of the new Scratch 20

WebUSB & Crikit
WebUSB beta & new Adafruit Crikit7

Girls into Coding
Young Avye’s latest crowdfunder8

Global Challenge
Largest micro:bit competiton ever9

HackBit 2018
A national level micro:bit hackathon12

Micro:bit in Saudi Arabia
Transforming education with micro:bit16

The micro:bit extension
Learn about the micro:bit blocks

Basics of Scratch + micro:bit
Learn the basics of the new blocks22

Scratch Team interview
Scratch answer our questions26

4

Issue 2: Contents

21

4

:feature

micro:melt
Make your own micro:bit
powered weather station.

7

Formula One in Schools
10 year old Sam tells us about his
micro:bit formula one project.

7

Micro:mate Smart Display
Why buy an expensive Echo show
when you can make your own!

7

Body Position Sensor
A wearable body position sensor
to monitor patients positions.

7

micro:melt
Make your own micro:bit
powered weather station.

7

Scratch Games Controller
Make a micro:bit Scratch controller29

Learn 2 Teach, Teach 2 Learn
micro:bit SeeSaw project33

Micro Simon
Hack a classic game with micro:bit

Python Debugging
Handy MicroPython debugging tips

:make

micro:bit & Kodu
Control Kodu with micro:bit47

Carbon Dioxide Monitoring
Detect Carbon Dioxide with micro:bit51

MakeCode Custom Blocks
Make your own MakeCode Blocks55

micro:melt
Make your own Weather Station60

Formula One in Schools
Make a micro:bit race car63

Micro:Mate Smart Display
Link micro:bit to Google Assistant67

The micro:bit Express
Hack a Lego Train with micro:bit70

Body Position Sensor
Track movement with micro:bit75

More Articles

Countdown Timer
Micro:hit returns for Issue 2!82

Meet the Foundation
Global Engagement Team84

:review

4Tronix cube:bit
3D cubes of awesomeness88

DFRobot Driver Board
Low cost motor driver board90

Dexter GiggleBot
An easy to control micro:bit robot92

Kitronik :GAME ZIP 64
A retro handheld gaming addon94

Scratch Games Controller

37 40

Mu Editor V1.0.0 is
HERE The next generation of Mu, the

beginners Python IDE is here
with brand new features.

L

 Iverpool makefest
was
 Asdhasdkjhagfhfg
dfgdfgdfgdgdfgdfgdfgdf
gdfgdfgdfgdfgdfgdfgdfg
dfgdfgdfggghjghjghjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjghjddgi
sdoighsdoiuhoaiuhgsuyf
goasdfgoiasgfoauisgfoia
sufgiuasgfoiausgfouiasgf
oiasgfoiasufgoaisudfgoia
sudgfoiadsf

What started off as a
basic MicroPython
editor for the
micro:bit has, with
the help of developer
Nicholas Tollervey
and community
members, turned
into a full Python IDE
for beginners. Mu’s
simple but clean
interface provides a
basic environment to

start coding with
Python compared to
IDE’s like IDLE. Mu
now supports
platforms like
Adafruit’s
CircuitPython
alongside PyGame
Zero. So why not head
over to codewith.mu to
download Version
1.0.0 for your device
today!

:news Mu Editor
6

https://www.kitronik.co.uk/microbit.html

webUSB Testing is
OPEN A new and easier way to flash

your micro:bit is in it’s BETA
stage and needs you!

Are you a regular
user of the MakeCode
and Python editors?
If you run chrome
and use one of these
editors, you can now
try out webUSB
which allows you to
directly flash your
code onto your
micro:bit without
having to drag and
drop the file onto the

device. This will make
the process easier for
beginners. The
Micro:bit Educational
Foundation invite you
to test out the Beta of
WebUSB to find any
bugs that need fixing.
At micro:mag we love
the idea of webUSB
and have been testing
it for a while, so follow
the link to sign up and
start using webUSB.

go.micromag.cc/webusb

:newswebUSB & CRIKIT

Adafruit Crikit for
micro:bit

Adafruit’s new Crikit
platform now available for
micro:bit.

If your an avid fan of
Adafruit, you may
have seen their Crikit
series of boards.
These boards which
are compatible with
the Circuit
Playground Express
and now the
micro:bit allow you
to easily create
robot’s, control
servo’s, make flashy
lights with neopixels
and much more.

Crikit stands for
Creative Robotica &
Interactive
Construction kit and
priced at just £27.60
from Pimoroni in the
UK you get lots of cool
features to make your
own robot that you
wouldn’t normally be
able to with just a
micro:bit. Click on the
link on the right to
learn more and
purchase a Crikit.

go.micromag.cc/webusb
go.micromag.cc/crikit

7

http://go.micromag.cc/webusb
http://go.micromag.cc/crikit

Girls into Coding Crowdfunder
Passionate young coder Avye is planning her

second event and needs your help!

Avye presenting her robot at Coolest Projects this year. Photo: GoFundMe

11 year old coder and maker Avye after her first

successful Girls into Coding event back in July is

crowdfunding to run her second. The events aim

is to get more girls into coding as their is a

current shortage in girls that are interested, so

Avye hopes to inspire more girls to be like her

and she’s doing this via these events.

Why crowdfunding?
Avye is crowdfunding so that at the end of the

event each girl gets to take home their own tech

package that will help them start their journey.

Inside the package will be a BBC micro:bit starter

pack and a Tinker kit, which has a set of modules

to create exciting projects.

:news Girls into Coding Crowdfunder

What will happen at the event?
15 girls will be able to participate in the event

where they will participate in a number of

coding workshops run by Avye, Firetech Camp

and Think Create Learn. Alongside these

workshops will be some talks by some inspiring

community members.

How can I help?
Join Avye’s mission to end the lack of female

representation in STEM by donating to her

crowdfunder below to help run this exciting

event.

go.micromag.cc/girls-coding

8

http://go.micromag.cc/girls-coding

The micro:bit
Global
Challenge

Small changes can have a big impact – you can
help the world promote sustainable
development!
Could you help make the world a better place?

Do you have ideas about how technology can

help achieve the United Nations Global Goals?

Are you aged between 8 and 12? Take part in the

most ambitious coding challenge yet and you

could win an expenses-paid trip to London to

take part in an amazing micro:bit Global

Challenge day with winners from around the

world!

The micro:bit Global Challenge is an

extraordinarily ambitious project which will see

the BBC micro:bit empower children to raise

their awareness of their community and develop

their computing skills. It’s a collaboration

between World’s Largest Lesson, Arm and the

Micro:bit Educational Foundation to create a

worldwide competition for children aged

between 8 and 12.

The competition is focused on the United

Nations Global Goals for Sustainable

Development (https://www.globalgoals.org), a

series of ambitious targets to end extreme

poverty, fight inequality and injustice and fix

:news

43

Giles Booth
Giles is the Educational
Content Manager at the
Micro:bit Educational
Foundation. Previously he
retrained as a teacher after a
long career in BBC radio and
has taught Computing from
Reception to Year 11.

@blogmywiki

Photographer : Ms Soratda Worrakittichotikorn
Ban Houy-Youkpaso School, Chiang Rai Province, Office of the Basic Education Commission (OBEC), Thailand. Courtesy of: World’s
Largest Lesson

their awareness of their community and develop

their computing skills. It’s a collaboration

between World’s Largest Lesson, Arm and the

Micro:bit Educational Foundation to create a

worldwide competition for children aged

between 8 and 12.

The competition is focused on the United

Nations Global Goals for Sustainable

Development (https://www.globalgoals.org), a

series of ambitious targets to end extreme

poverty, fight inequality and injustice and fix

9

https://www.globalgoals.org
https://twitter.com/blogmywiki
https://www.globalgoals.org

climate change for everyone by 2030. Taking

part in the micro:bit Global Challenge will

enable children to explore issues that relate to

them and their communities and develop their

problem-solving skills. Perhaps you have ideas

about using the BBC micro:bit to make your

school or neighbourhood a safer place to be, or

ideas about making the world a healthier

place?

:news micro:bit Global Challenge

electronically. The micro:bit Global Challenge

Producer Jo Inglis explained to me that the project

is designed to provoke conversation and inspire

creativity in the classroom and it will be accessible

for non-experts, children and adults alike. The

Micro:bit Educational Foundation is providing

cross-curricular resources to support pupils and

teachers, whether they have used a BBC micro:bit

before or not.

Emma Smart of the Micro:bit Educational

Foundation is very excited about the Global

Challenge. She told me “This is an amazing project

to be a part of, the micro:bit has huge potential for

helping to solve real-world problems and we’re

looking forward to seeing the creative solutions

from the micro:bit community. We couldn’t do this

on our own and want to say a massive thank you to

everyone who is working with us on this incredible

competition.”

Your project could help make the world a healthier place

There will be six finalists from different

regions: Europe, North America, the Middle

East, Africa, Asia and Pacific (including

Australia and New Zealand), and Latin America

and the Caribbean. You can work in a team or

as an individual, and one young person (plus

parent or guardian) from each winning project

will be brought to London will take part in the

Global Challenge finale event at the end of

January 2019 where the regional winners will

take part in a series of group challenges and

masterclasses.

The competition is free to enter. You can create

your projects using MakeCode or Python, but

you don’t have to have a micro:bit to take part!

Entries will be accepted on paper as well as

Photographer : Ms Soratda Worrakittichotikorn
Ban Houy-Youkpaso School, Chiang Rai Province, Office of the
Basic Education Commission (OBEC), Thailand Courtesy of: World’s
Largest Lesson

If you want some inspiration for how the BBC

micro:bit can be used in creative ways, have a look

at the Ideas page http://microbit.org/ideas/ and

10

http://microbit.org/ideas/

find out more about how to code the device

http://microbit.org/code/

:news
43

micro:bit Global Challenge

The closing date for submissions is in

mid-November 2018. You can find more details

about how to enter the competition on our website

(find the link at the bottom of the page) .

Shortlisted submissions will be judged by regional

teams who will pick six winners who will be

brought together in London, UK for the

competition finale.

Jo Inglis, Producer for the micro:bit Global Challenge

Kavita Kapoor, the Micro:bit Educational

Foundation’s Chief Operating Officer, says this

is the most ambitious micro:bit project yet.

“The micro:bit already inspires young people

all over the world and we see such incredible

projects from such diverse places which

include classrooms in Canada, refugee camps

in Greece and the Amazon jungle! The Global

Challenge will give an opportunity to children

all over the world not just to learn more about

practical uses of coding, but to connect with

like-minded people in problem-solving that

will make a genuine positive difference to our

collective future. I am really excited about

meeting participants, finding out about their

communities and the different challenges they

are solving with the tiny but powerful

micro:bit. Best of luck”

Courtesy of: World’s Largest Lesson

Small devices can have a big impact!

Find out more about the challenge over at:

go.micromag.cc/global-challenge

:newsmicro:bit Global Challenge
11

http://microbit.org/code/

FINDING FITS
at the Hack:Bit
2018

The First Ever National Level micro:bit based
Hackathon, Hack:bit 2018 concluded
successfully.

Shenali Welikala
Chief Editor at
STEMUp
Educational
Foundation

A school team is presenting their solution in front of the judge
panel

Hack:Bit 2018 made history as the first-ever

National level micro:bit based hackathon. The

hackathon was organized by micro:bit Sri Lanka

User Group (micro:bit SLUG) , an affiliate of the

micro:bit Education Foundation based in the UK

and a child organization of the STEMUp

Educational Foundation. The Hackathon

kick-started with the opening of idea

submissions on January 2018. Ideation was

called from both universities as well as school

categories.

Around 80 submissions were received at the

time submissions closed in the month of April.

The ideas were then presented to a panel of

judges consisting of 3 international and 3 local

judges namely

1. Mr Philip Meitiner- Former Head of

International Programs, micro:bit

Educational Foundation, UK

2. Mr Howard Baker- Researcher, micro:bit

Educational Foundation, UK

3. Mr Waris Candra- Head of Asia, micro:bit

Educational Foundation, UK

4. Mr Shameera Prajapriya- Solution

Architect, WebQuarters

5. Mr Pradeep Kotuwegedara- Senior

Learning Solutions Specialist, Tech One

Global

6. Mr Pradeep Senavirathne- Author

(Embedded Technologies), Apress.

The top 25 ideas were selected to the final round

of the competition based on the judges’ marks.

@microbitslug stemup.foundation

:news Finding fits at the Hack:Bit 2018
12

http://twitter.com/microbitslug
http://stemup.foundation/

Then it was time for the final round of the

hackathon to be held. micro:bit SLUG partnered

up with Sarvodaya Fusion and Microsoft to put

forward the final round creating a sturdy

platform for the students to perform well and

bring their ideation into reality. The finals were

held at Trace Expert City Auditorium as a 24

hour Hackathon starting on Friday 6th of July

4.00 p.m. till Saturday 7th of July at 4.00 p.m.

The university category had to compete for 24

hours whereas the schoolers had to compete

subjected to a time limit of 8 hours. A total of

14 school teams competed head to head at the

finals. The teams include Ananda College

Colombo (1 team),

Team SkyNet is finalizing their implementation.

Gateway College Colombo (1 team),

Bandaranayake College, Gampaha (1 team), St.

Anthony’s College Kandy (1 team), St. Sebastian’s

College Moratuwa (1 team), Embilipitiya

President’s College (2 teams) and from Nanasala

Centers (7 teams).

The universities who battled at the finals under

the university category were University of

Rajarata (2 teams), University of Moratuwa (3

teams), University of Colombo School of

Computing (UCSC) (2 teams), Horizon Campus

Malabe (1 team), Shilpa Sayura Digital Academy (1

team) and Kotelawala Defense University (1

team).

:newsFinding fits at the Hack:Bit 2018
13

Awards

The finalists under each category were given

the aforesaid time durations to implement

their ideas by using micro:bits which were

provided to each team.

After an intense 24hrs of hacking the final

products were evaluated by a panel of tech

giants in the industry to select the winning

idea.

The panel of judges of the final round who

rendered their valuable contribution to select

the winning products are as follows.

1. Mr Wellington Perera- CSA, Microsoft

2. Mr Thulasee Shan- TSP, Microsoft

3. Mr Isura Silva- Consultant, Sarvodaya

Fusion

4. Mr Prasad Piyasena- Senior Consultant,

SLIDA

5. Mr Chamira Jayasinghe- CEO, Arimac

Lanka

6. Mr Calvin Hindle- Senior Business

Analyst, MIT

7. Mrs Lin Gong Deutschmann- Managing

Director, AOD

8. Mr Chalinda Abeykoon- CEO,

Crowdisland.lk

Team royal hackers is presenting their Smart Saline solution

The keynote speech was delivered by Hasitha

Abeywardana- Country Manager, Microsoft Sri

Lanka and the Maldives.

Hasitha Abeywardana - Country Manager, Microsoft Sri Lanka &
Maldives

The winners of the school category were as follows

● Winner: Team Antonian Computer

Fraternity- St. Anthony's College Kandy

● 1st Runner-Up: Team Dynamic Dudes- St.

Anthony's College Kandy

9. Mr Shafraz Rahim- Senior Business Lead,

 Dialog Axiata

The two categories were evaluated separately by

the aforesaid panel of judges and the final results

were announced at the awards ceremony of the

Hackathon.

:news Finding fits at the hack:bit 2018
14

● 2nd Runner-Up: Team Royal Hackers-

Nenasala Center, Udubaddawa

School category winners with their awards

University category winners with their awards

With that note the first ever micro:bit based

hackathon in the Nation came to a close by

achieving its aim to help innovative and tech

enthusiast students “Find Their Fits” through

Hack:bit 2018.

Winners and runners-up of the school

category were awarded gifts worth LKR

50,000, LKR 35,000 and LKR 20,000 where the

winners and runners-up of the university

category were awarded cash prizes worth LKR

100,000, LKR 75,000 and LKR 50,000.

Prabhath Mannapperuma - Executive Director, STEMUp
Educational Foundation

Find out more about
Hack:Bit:

StemUp Foundation Website:
go.micromag.cc/stemup

Micro:bit SLUG:
go.micromag.cc/mbSLUG

Hack:Bit Video:
go.micromag.cc/hbvideo

The gathering was addressed by Prabhath

Mannapperuma- Executive Director, STEMUp

Educational Foundation where he stated that their

expectation was not only to see commercially

viable products especially in the school category

but to also give them the opportunity to make this

competition a turning point of their lives.

The winners of the university category were as

follows:

● Winner: Team Undefined- University of

Moratuwa

● 1st Runner-Up: Team Imperium-

University of Moratuwa

● 2nd Runner-Up: Team SkyNet-

Kotelawala Defense University

:newsFinding fits at the Hack:Bit 2018
15

http://go.micromag.cc/stemup
http://go.micromag.cc/mbSLUG
http://go.micromag.cc/hbvideo

MICRO:BITS
in Saudi Arabia
Classrooms

A review of the change that has occured with
Computer science education in Saudi Arabia.

Areej Abdullah Alghamdi

I would like to tell you about my experience and

the qualitative leap in Saudi education that has

occurred over the past two years and my aims to

create a Saudi human actor in combination.

One of these changes is the change in the

methods of teaching computing and linking it to

the reality of the students.

Saudi teachers are very excited to have an

effective impact on their students. One of these

successful experiences is the adoption of the

programming project through the micro:bit

Many teachers have implemented different

programs with their students and many of them

,despite the lack of Arabic content, help to

discover many ideas and the results were

impressive. Among the interactive methods that

have been applied there has been the

establishment of exhibits for student projects

with micro:bit for the first time in the history of

education in Saudi Arabia.

Many of the students were willing to learn and

from the experiences that other students

displayed and enjoyed.

One teacher created an interactive story to show

the story to their children using microcube

pieces as well as setting up an alarm system in

case of an emergency or a fire. Many successful

experiences have made many teachers want to

learn more about the micro:bit and how it could

be integrated into their lessons. This particular

teacher experimented with the experience of

applying the micro:bit with his students.

:news micro:bit in Saudi Arabia

Areej ALGHAMDI has 14
years of experience in
education. She is
currently a computer
science teacher in Saudi
Arabia. Last year she won
the best teacher award in
Saudi Arabia.

One of the student projects that Areej Alghamdi has helped her
students create.

16

Using the micro;bit in class has changed a lot of

my teaching strategies and also contributed to

the attention of my students, especially when

they are solving problems and with using the

micro:bit, they are learning important skills

required in the world today. I have also linked

many of my students' projects with the

objectives of sustainable development, for

example, how to achieve environmental

awareness and solve many environmental

problems.

Microsoft Saudi Arabia have been great support

in distributing some of the micro:bits to

students in partnership with the Musk charity

association. This is one of the reasons that called

for the dissemination of physical programming.

It is the involvement of the

:newsmicro:bit in Saudi Arabia

Some of the students projects. Just two of the many projects being carried out in class.

community, the enthusiasm of the teachers and

the qualitative shift in education that brought

about this change.

Another teacher who also incorporated micro:bit

into their classroom said: “Coding skills are

highly relevant in today's scientific and

technological careers, and they will only become

more important in the future. That's why it is

essential that we teach these skills” I hope that

other countries can do the same that we have so

their students can have experiences they need

for the future.

17

All of our content is written and
provided by community members.
We’re really keen to hear from anyone
who would like to contribute to the
magazine, whether you’re a seasoned
writer or just want to have a go.

micro:mag
needs you!

Get in touch!
micromag.cc/contribute
hello@micromag.cc
@micro_mag

http://micromag.cc/contribute
mailto:hello@micromag.cc
https://twitter.com/micro_mag

Scratch
for

We love Scratch. It’s one of the most popular ways for kids to learn coding. With

5 years olds using the basic Scratch Jr app on their tablets to 8-year-olds using

the full version of Scratch. From story animations to games, those little blocks

of code truly come to life with the power of Scratch. However, until very

recently, there has been limited devices that you can use in conjunction with

Scratch, these, for example, were things like Lego WeDo, which why great, can

be very expensive for schools to buy. So, with the very latest version of Scratch

3.0, which has just been released, the Scratch team have brought micro:bit to

this popular coding tool. In this exciting cover feature, we hope to cover the ins

and outs of Scratch 3 and the micro:bit. Enjoy!

19

What’s new in
Scratch 3?

A new look for Scratch
If you have used Scratch in the past, you’ll

notice the new look for scratch. Even the look

of the Scratch blocks has changed.

The sparkling new Scratch 3 UI, a familiar layout with a more modern twist

More extensions
The most exciting thing for us is the

extensions that come with Scratch 3. This

allows us to control the micro:bit and make it

interact with Scratch. Making this coding

tool even more exciting

Works on tablets
Scratch has been updated to use HTML

instead of Flash, which means you can use it

to program cool stuff on your tablet just like

you would do on your PC!

Updated tools
The sound and costume editing tools have

been updated to allow more control over

sound files and the way you edit costumes.

This will allow you to make your creations!

sound and look better!

20

The micro:bit
Extension

How does micro:bit work

with Scratch 3?
You may be wondering how micro:bit actually

works with Scratch. This is due to Scratch 3’s

brand new ‘extensions’ feature, this allows you

to add extra blocks into Scratch. Amongst the

extensions that come with Scratch is the

micro:bit. There are many other extensions

like Translate and Lego Mindstorms to have a

play around with too. The micro:bit extension,

once imported, has simple blocks that can

control scratch with the micro:bit’s onboard

features. You can do awesome things like

shake the micro:bit to make the cat draw a

shape, this makes Scratch much more fun to

play with. The micro:bit is programmed via a

program called Scratch Link, which allows you

to interact with your micro:bit over Bluetooth

in real time!

Fact:
Scratch is a project ran by the MIT

(Massachusetts Institute of Technology) team

in Minneapolis, USA
21

THE BASICS
of micro:bit and
Scratch 3.0

Learn how to connect up your micro:bit to
Scratch 3.0 and find your way around the brand
new micro:bit extension.

Michael Rimicans
Michael has been
tinkering with the
micro:bit since it was
released and using it for
cool things. He is a STEM
ambassador, Code Club
volunteer

@heeedt heeed.net

:feature
22

THE BASICS OF MICRO:BIT
AND SCRATCH 3

If you're reading this magazine then Scratch

probably needs no introduction. It's approach to

teaching the basic concepts of creating code

with a block-based system lowered the bar for

everyone who wanted to learn the basics and

have some fun doing so.

The current stable edition is Scratch 2.0, found

at go.micromag.cc/scratch, is the one that most

people will be familiar with. Scratch 2.0 bought

some improvements in use from the first

version but it still had no simple way to interact

with micro:bit or similar devices.

The latest version of Scratch, Scratch 3.0, has

been in development over the last few years was

recently released to public Beta testing on the 1st

of August 2018 with a planned full release in

early 2019. This has been a complete rewrite

using HTML5 with other modern web

technologies and finally removes the need for

Flash. Scratch 3.0 can now run natively in any

modern web browser although Internet Explorer

will no longer be supported.

This new version also introduces 'Extensions'

which are a framework for new functionality to

be added to Scratch. One extension that has been

added is the micro:bit extension which allows

Scratch to communicate with the micro:bit over

Bluetooth with the help of a small application

called Scratch Link.

Installation
Scratch Link can be found at

go.micromag.cc/scratch_3

and has the following requirements:

Windows 10+ or macOS 10.13+ Bluetooth 4.0
Whilst this article concentrates on a Windows

installation the macOS version should perform

the same once installed by following the

instructions for macOS.

http://twitter.com/heeedt
http://heeed.net/
https://scratch.mit.edu/
https://go.micromag.cc/scratch_3

With Windows, install Scratch Link by

downloading the zip file from the site, unzip it

and double click on the resulting file and follow

the installation process.

Once installed start Scratch Link by

double-clicking on ScratchLink.exe in the

c:\Program Files (x86)\Scratch Link directory.

The Scratch Link installer does not appear to add

the application to the Start menu, however, this

can be solved by right clicking on the

application file and clicking Pin to Start. Once

running it should appear in the taskbar.

Setting up the micro:bit
The next step is to set up the micro:bit to work

with ScratchLink. To do this download the hex

file from the page, unzip it and install the hex

file onto the micro:bit via the normal drag and

drop over USB method. Once the hex file has

been installed correctly the micro:bit screen

should start to scroll a five letter phrase which

will help to identify the micro:bit when

connecting from Scratch. At this point the

micro:bit may be switched over to battery power

as all further communication with the micro:bit

will be via Bluetooth.

Setting up Scratch 3.0
Make sure Scratch Link is running and open

your browser and go to

go.micromag.cc/scratch_beta to access the Beta

version of Scratch 3 and click on the 'Try It'

button. Block
Palette

micro:bit Extension Button

:featureTHE BASICS OF MICRO:BIT
AND SCRATCH 3

23

Click on the add extension button, it has two
white bars and a plus symbol, at the bottom of
the block palette.

Choose the micro:bit extension and
wait for the extension to install.

Once installed extension will then

start to search for the micro:bit.

micro:bit Extension Button

https://go.micromag.cc/scratch_beta

Your micro:bit has been connected!

:feature THE BASICS OF MICRO:BIT
AND SCRATCH 3

24

Once discovered your micro:bit will appear on

the screen with the same five-letter code that's

displayed on the micro:bit screen.

Scratch has found your micro:bit

Click on the connect button and Scratch 3 will

then connect to the micro:bit. Once connected

the micro:bit will display a tick on its screen and

the browser will show that's it's connected. To

complete the setup click on the 'Go to Editor'

button.

Troubleshooting
If the connection can not be made then check

the following:

● The micro:bit is powered and has had the

connection hex file installed properly.

● Bluetooth is switched on and available.

● The micro:bit extension has been

installed in Scratch.

The first check will be easy. If the micro:bit is

scrolling the five characters across its screen

then it is powered and has the connection hex

file installed correctly.

As Bluetooth is required for the micro:bit to talk

to Scratch 3 then make sure that your computer

has a Bluetooth dongle built-in or plugged in

and configured for use. Suitable Bluetooth 4.0

adaptors are available from online stores if your

computer does not have one. If the micro:bit has

been set up properly and your computer's

Bluetooth is active then refresh the browser

page displaying Scratch 3 and reinstall the

micro:bit extension.

Usage
Now that the micro:bit is connected to Scratch 3

you can now start to have some fun.

Clicking on the micro:bit in the block palette

will show the available micro:bit blocks. As it

stands at the moment, apart from using the

micro:bit screen, the extension only handles

input from the micro:bit and you are unable, for

example, to use it to turn a LED on and off from

Scratch 3. Hopefully, using the micro:bit

outputs will be added at a later date.

The Blocks

This block reads the status of the buttons. You

can select A, B or Any. Pressing both A+B

appears not to be supported at this stage.

:featureTHE BASICS OF MICRO:BIT
AND SCRATCH 3

25

This block can be used where you need to test

the the status of the buttons. Again this can

sense A, B, or A+B.

This block will scroll its contents across the

micro:bit screen.

This block will clear the micro:bit display.

This block reads the micro:bit angle. It can

sense the following tilt positions of the

micro:bit: front, back, left, right and any.

This block can be used to test if the micro:bit is

tilted.

This block stores what position the micro:bit is

tilted.

This block allows you to read the input status of
pins 0, 1 and 2 of the micro:bit

This block detects if the micro:bit has been

physically moved. It can sense if it's moved,

shaken or jumped.

Demos
One well thought out point is that the micro:bit

blocks will connect and work seamlessly with the

other Scratch blocks. The example below shows a

simple name badge application using the

micro:bit blocks:

This script shows how the micro:bit blocks work

with the existing Scratch blocks. As you can also

use the micro:bit motion sensors in Scratch the

example below shows how to change the Scratch

Cat's colour by shaking the micro:bit whilst using

the A and B buttons to stop and start the script.

So, having read this....What can
you do?

feature::feature THE BASICS OF MICRO:BIT
AND SCRATCH 3

SCRATCH
Team Interview

We got the chance to talk to two members of the
Scratch team. Here’s what they had to say...

Please introduce yourselves

Kreg: Hi! My name is Kreg Hanning, I’m a

researcher with the Lifelong Kindergarten

research group at the MIT Media Lab.

Eric: Hello, my name’s Eric Rosenbaum, a

developer on the Scratch team. I also have a PhD

from MIT Media Labs Lifelong Kindergarten

Group.

What is your favourite part of
Scratch 3 and why?

Eric: I’m particularly proud of the new “set pitch

effect” block that lets you use Scratch code to

change the pitch of a sound interactively. You

can get all kinds of chipmunk-voice and

monster-voice effects that way. I’m excited to

hear what people do with it! And of course, I’m

26

very excited about the many new extensions

we’re adding. But maybe my FAVORITE favourite

part is the fact that we have a renewed emphasis

on making Scratch even more accessible to

beginners, by keeping it simple and playful.

Kreg: I really love the new extension system in

Scratch 3.0. It lets you play with all kinds of new

Scratch extension blocks for translating text,

synthesizing speech, and even controlling the

micro:bit! They provide Scratchers with an easy

way of interacting with the physical world and I

can’t wait to see what people create with them!

What inspired you to create an
extension for the micro:bit?

Eric and Kreg: Scratch and micro:bit is like

peanut butter and jelly- they just go together so

well. We’re so happy to be able to mash together

the digital flexibility of Scratch, and the physical

flexibility of the micro:bit. By combining them

you can make all kinds of new projects that blend

making in both the physical and virtual world.

You can create things like new musical

instruments out of household objects, game

controllers out of craft materials and

The Extensions page in Scratch 3.0 includes support for major platforms like micro:bit, Lego

Mindstorms and more as well as support for Translation and Video Sensing.

recyclables, custom costumes that let you take on

a role in a digital story, and a whole lot more. We

really care about what we call tinkerability,

which is the way you can learn about how

something works by trying it out and seeing the

results right away. It’s the sense that you can

safely try anything, and there are infinite things

to try. We design Scratch with this in mind, and

the micro:bit extension is the same way. It’s

“tethered” so that the connection is always live.

For example, you can click on a block in Scratch

and see the micro:bit display update right away.

The coding process isn’t separate from the play-

it’s a single continuous process.

Another thing we love about the micro:bit is the

fact that it’s a truly accessible physical

computing platform, and it’s empowering so

many children around the world, which matches

the spirit of the Scratch project.

The micro:bit works with Scratch 3.0 using BLE

which means you can ‘live code’ the micro:bit.27

Do you see this as an important step
in the development of Scratch and
Physical Computing in schools?

Kreg: One of the main reasons we are excited to

see the micro:bit used with Scratch in schools is

that it can provide a playful approach to physical

computing. We hope that, like Scratch, the

micro:bit will provide a physical platform for

children to explore their ideas regardless of what

they feel passionate about. So whether a child

loves art, music, or even storytelling, we hope

that Scratch and the micro:bit can help promote

curiosity and personal expression in physical

computing.

What are the main differences
between Scratch 2 and Scratch 3?

Eric: Scratch 3 is a complete rewrite of Scratch

using different technology (javascript, in place of

Flash), but it’s backwards compatible, so

generally all the features of Scratch 2 will still be

there and existing projects will work as before.

Many parts of the Scratch editor have been

redesigned (I’m particularly a fan of our new

sound editor, and our new bitmap and vector

costume editors), and it comes with hundreds of

new images and sounds for kids to use in their

projects. Another big change is that there are a

lot of new extensions to Scratch, which adds new

blocks for things like the micro:bit and LEGO

robotics kits, and many more that we’re hoping

to add in the future. We’re also excited for

Scratch 3 to be able to better reach kids where

they are, as we work on creating great Scratch

experiences on tablets and mobile devices.

What was the hardest part of making
the micro:bit extension?

Eric and Kreg: One big challenge is choosing

what to include. The micro:bit has a lot of

powerful features, but we wanted to keep the

Scratch extension really simple. It’s a balance

between making sure it’s understandable and

fun for beginners, while still providing a huge

number of creative possibilities. Mitch Resnick

(founder of the Scratch project) talks about

designing for a low floor and a high ceiling:

making it easy to get started, but possible to do

more complex projects. In the workshops with

children and adults we’ve done so far, we’ve

found that the compromise we’ve reached

accomplishes this pretty well!

The micro:bit extension loads into Scratch with a few simple

clicks. It’s easy! You can also integrate the blocks into standard

scratch ones.

Scratch 3.0 gets released in January 2019

but you can try the BETA today over at:

beta.scratch.mit.edu

28

https://beta.scratch.mit.edu/

feature::feature

Turning your micro:bit
into a Game Controller

With a few alligator clips and some imagination, you can build your
own micro:bit-powered controller for a Scratch 3 game.

gold pins. Tweak a game's code to use these

blocks, and you can build a micro:bit-powered

game controller from anything that conducts

electricity!

Choosing a game

First, you’ll need to make or find a game to work

with. Your micro:bit has three pins that can be

turned into buttons, so you’ll need to start with a

Scratch game that can be played with no more

than three keyboard keys. Lots of games can be

played with just the space key, the left and right

You Will Need:
- A computer with Scratch Link installed

- A micro:bit with batteries

- 4-8 alligator clips

- Something that can complete a circuit:

buttons (or other momentary switches),

conductive tape, aluminum foil, metal

paper fasteners, etc.

- Optional: Crafting materials

Scratch 3 comes with some exciting new

micro:bit blocks, including ones that fire when

connections are made between the micro:bits

Eileen King

@eyeleanking

Eileen King teaches young
people to build things with
their hands and with
computers in the Twin Cities
area. You’ll find her other
tutorials on Medium
(@eileenaking).

29

https://twitter.com/eyeleanking
https://medium.com/@eileenaking

arrow keys, or left/right/up: if you’ve ever tried

the Pong Game or Catch Game tutorials, for

example, then you’ve got a game you can use! If

you don’t already have a game made that will

work, then you have two options: you can either

build a game yourself (you could try one of those

tutorials, or look for other options online), or

you can remix someone else’s game (try the

Scratch Wiki’s list of example platformer

games, or search for games inspired by Flappy

Bird, Tetris, or Space Invaders - anything that

can be played with no more than three controls).

While Scratch 3 is still in beta, you won’t be able

to remix games made with Scratch 2. For now, if

you want to work with a game you or someone

else made in Scratch 2, you’ll need to download

it to your computer, open Scratch 3, then upload

the project.

Next, spend some time playing the game! Make

sure you’re familiar with its controls and can

confidently explain how to play - that will help

you figure out how to find the parts you want to

change later.

Controlling the game with a
micro:bit
Once you’ve got a game running in Scratch 3

that uses no more than 3 different inputs as

controls, you’re ready to start controlling it with

your micro:bit!

Here’s what you’ll need to know: your micro:bit

has some gold-coloured connection on spots on

its bottom edge that are called pins. There is a

Scratch block that looks like this:

This can go on top of a script, and it makes that

script run whenever a connection is made

between the pin that says GND (for ground) and

the pin that says 0, 1, or 2 (whichever one you’ve

chosen on the block). This connection can be

made by your fingers, by two pieces of metal

touching, or by anything else that can conduct at

least a little bit of electricity!

To use these pin connections to control your

game, you’ll need to identify the parts of the

code that currently handle input, then change

them to use micro:bit pin connection blocks

instead. For example, if you’re working on a

game controlled by the left/right and right

arrows, then you’d look for scripts that start:

:featuremicro:bit Games Controller
15

:feature micro:bit Games Controller
30

If the game uses the spacebar, look for

If you’re working with a remix of someone else’s

project, it’s totally okay to not understand every

single block in the project - just focus on finding

the scripts whose Events blocks match the

game’s controls.

When you find one of these controller scripts,

detach the code from the Events block it’s

attached to, and put in this block instead:

Be sure to choose a different pin for each

control!

After you’ve found and replaced the keyboard

controls with pin controls, give it a test run: can

you now play the game by making connections

between ground and the numbered pins? Touch

and release the pins to ensure that the new

controls work the same way as the original ones!

Creating a controller

Now that the game can be played by making pin

connections, you can get creative with how you’ll

make those connections! Start by clipping an

alligator clip onto each pin, and test your game

by touching the other ends of the alligator clips

together to make pin connections. It should still

work the same as it did when you were putting

your fingers directly on the pins!

Now, to turn it into a custom controller, think

about what other materials you could work with:

anything that will conduct electricity can be

clipped onto the alligator clips and touched

together to control the game. What do you want

the player to do to make those connections?

There are lots of possibilities! For example, try

creating a conductive surface to clip to each of

the numbered pins, then tapping those surfaces

with something clipped to ground.

:feature micro:bit Games Controller

On pin connected blocks

"est your game by holding ground, then touching and
releasing another pin.

An example game controller made of
foil and conductive tape.

15

:featuremicro:bit Games Controller
31

Here, we clipped each pin to a piece of conductive

tape, then clipped the ground wire to a piece of

foil. We wrapped the foil around a finger, but you

could also wear it as a bracelet, sculpt it into a

magic wand, or come up with your own creative

idea.

Don't have conductive tape? Foil alone can be

fun, especially if you're willing to get a little

active, like we did with this foot controller:

Finally, a little bit of crafting can turn a tangle of

wires into a polished custom controller:

Whatever you decide to build, make sure to test

it thoroughly. Then find someone to share it

with!

Troubleshooting:

If your controller suddenly stops working, here

are some good things to check:

● Are the micro:bit and computer still

communicating? If the micro:bit restarted

or moved out of range, it may need to be

paired again.

● Are the alligator clips askew? If they’re not

squarely clipped on the pins,

perpendicular to the bottom of the

micro:bit, that can cause problems.

● Are there alligator clips touching each

other that shouldn’t be? Especially if you

choose to put wires inside a small

container, it’s possible for clips to make

unwanted connections with each other.

:featuremicro:bit Games Controller

One foot remains stationary on a foil pad clipped to ground;
the other foot taps the left, right, and jump “buttons.”

15

:featuremicro:bit Games Controller
15

:feature micro:bit Games Controller
32

For an additional challenge, try it as a team

game: three people stand with one foot on the

grounded pad, then each person has one of the

other controls to tap with their other foot. It’s

tougher to coordinate than you might think!

If you have access to buttons or another type of

momentary switch, those can be fun to use! Each

switch will need to be clipped to a numbered pin

and to ground - one wire on each leg of the

switch. Be careful that the alligator clips aren’t

in contact on the base of the switch, though!

If you’re using more than one button, it’s
easier to clip alligator clips to each other
than to try to cram more than one clip
directly onto the ground pin.

feature::feature

Explode the Controller

Connecting physical play and video games with see-saws,
Micro:Bit, and Scratch 3.0

For example, we created a simple Avoider game

in Scratch 3.0 where the player must dodge

incoming asteroids by balancing on the

see-sawing ‘❤ Rocks Board’ and tilting it to move

the ship. A micro:bit attached to the controller

sends tilt angle data from its accelerometer to

the game via Bluetooth, and Scratch uses this

information to change the

John Lynch

@Mittensbrother

John is a professional teacher,
half-decent carpenter, and
amatuer game designer.
Building game controllers with
the Micro:Bit connects all his
pursuits together.

@ Learn 2 Teach, Teach 2 Learn

This summer, the youth teachers at the Learn 2

Teach, Teach 2 Learn program are blowing up

video games with new, homemade controller

designs. Instead of sitting down and pressing

buttons to play, a player uses these devices by

running, jumping, and balancing to interact

with the game. We call it the ‘Explode the

Controller’ project.

mittensbrother.com

33

https://twitter.com/mittensbrother?lang=en
http://mittensbrother.com/

position of the ship sprite. Players of all ages

love how the game challenges both their

coordination and reaction time.

Why do we want to add physical activity to our

games? Well, it’s loads of noisy fun to play using

your whole body, but we also design games like

this to get young people excited about making

code themselves. Boston’s Learn 2 Teach, Teach

2 Learn program empowers the most

underrepresented youth in our community to

move from being consumers of technology to

producers and creators. Each spring, 30 high

school students gain skills in 6 maker

technologies, including microcontroller coding

with micro:bits. In the summer they build

projects, then spend the last three weeks

teaching summer STEAM Camps in the Boston

neighborhoods most in need of educational

resources. Many of these children have never

experimented with code before, but game

controllers like the ❤ Rocks Board help to inspire

these beginners because even basic game

projects can be made fun immediately when

connected to physical activity.

:featuremicro:bit Games Controller
15

:feature Explode the Controller
34

Trinity avoids asteroids on the ❤ Rocks Board

Closeup of tilting ❤ Rocks Board

Detail of the Scratch 3.0 Avoider game

Micro:Bit blocks are included in Scratch 3.0

According to program director Susan Klimczak

@zackboston, Learn 2 Teach, Teach 2 Learn

brought activities like ‘Explode the Controller’ to

more than 600 children at 25 community

organizations.

We hope to inspire micro:mag readers to try out

their own homemade controller ideas, too! What

kinds of motions, dances, or other challenges

can you imagine for players in your next video

game project? What will your controller look

like, and how can tech like the micro:bit connect

it to your code?

To learn more about the fantastic making and

education happening at the Learn 2 Teach, Teach

2 Learn program, follow them on twitter

@Learn2TeachSETC.

Want to try out the ❤ Rocks Board? It features

3D printed parts and simple materials to be

quickly and easily reproduced. Build

instructions for this and other ‘Explode the

Controller’ devices are available at

go.micromag.cc/explodethecontroller

micromag.cc/contibute

:feature micro:bit Games Controller
15

:featureExplode the Controller
35

https://twitter.com/zackboston
https://twitter.com/Learn2TeachSETC
http://mittensbrother.com/projects/explode-the-controller/
http://micromag.cc/contribute

Make sure you never miss an issue

of the unofficial community

magazine for micro:bit lovers -

we’ll email each issue as soon as it’s

released (and we won’t ever spam

you or give your details to anyone

else)

Get fresh copies
of micro:mag
delivered to
your inbox

To sign up, go to
micromag.cc/email

http://micromag.cc/email

Micro Simon

feature:Thomas Stratford

@MrTomsWorld

This project is based on an excellent micro:bit

MicroPython Simon Game example I found on

the MultiWingSpan website

go.micromag.cc/multiwingspan This gave me an

idea, could a vintage MB Simon game be

controlled by a micro:bit? The Milton Bradley

Company was an American board game

manufacturer established by Milton Bradley, in

Springfield, Massachusetts, in 1860. He enjoyed

early success when he packaged a series of

games, including The Checkered Game of Life, in

a pocket-sized game pack (the country's first

"travel" game) designed for soldiers during the

Civil War.

Simon is an electronic game of memory skill.

The device creates a series of tones and lights

and requires a user to repeat the sequence. If the

15

Thomas is an ICT Support Technician
at the Misbourne School. When not
fixing IT problems, I enjoy making,
tinkering, retro computing and
building electronics projects.

Take a classic MB Simon game and combine it
with a micro:bit.

The completed Micro Simon game, complete with external micro:bit and the associated circuitry.

:feature Thomas Stratford

@MrTomsWorld

Thomas is an ICT Support
Technician. When not fixing
IT problems, I enjoy making,
tinkering, retro computing
and building electronics
projects.

37

https://go.micromag.cc/multiwingspan
https://twitter.com/MrTomsWorld

user succeeds, the series becomes progressively

longer and more complex. Once the user fails or

the time limit runs out, the game is over.

The original version was manufactured and

distributed by Milton Bradley, launched in 1978.

Testing
With this idea in mind, I had a quick hunt on

eBay for a broken Simon game, after a while one

came up so I duly purchased it. While I waited

for the game to arrive, I knocked up a quick

circuit with some low voltage light bulbs and a

ULN2003A Darlington transistor array (An

integrated circuit containing several transistors)

to drive the bulbs.

The original full-sized game uses a custom MB

Electronics processor which performs nearly all

of the functions for the game. The only other

significant piece of electronics is an additional

integrated circuit which interfaces the

processor to the light‐bulbs and the built-in

speaker.

Here I have connected the micro:bit Simon game I build on a
breadboard to another breadboard with a ULN2003A on and
this is connected to the bulbs.

When the game arrived I duly took it apart, well

it sadly didn’t work and was pretty beaten up.

Oh well!. I found some useful information about

these classic Simon games here:

go.micromag.cc/classicsimon included on the

site was a schematic which helped to trace out

the existing Printed Circuit Board (PCB) layout so

I could tap into the existing bulb and switch

circuits.

I removed the main PCB from the Simon game enclosure so I
could trace out the connections.

Next Steps
I removed the main PCB from the enclosure and

connected some wires temporarily to the

existing PCB to continue testing.

Here I have connected the two breadboards to the main PCB
to check that everything works.

:featureMicro Simon
15

:feature Micro Simon
38

https://go.micromag.cc/classicsimon

Once I was happy with this, I removed the

existing custom processor additional integrated

circuit and soldered some new wires to the

existing colour switches and bulbs. I then

connected these to my existing breadboard

layout and gave it a quick whirl, it worked

brilliantly.

Completed Project

They’re rated in millicandelas or thousandths of

a candela. Millicandela is typically abbreviated

as mcd.

I removed the existing bulb holders from the MB

Simon game PCB and glued the new LED

modules onto the existing PCB.

Showing the completed project with everything back together.

I took my Micro Simon game out on the road and

it performed well but the bulbs weren't very

bright. Despite some experimenting to see if I

could get the bulbs any brighter, I couldn't so I

decided to build some Light Emitting Diode (LED)

modules to replace the existing bulbs. I brought

some high-intensity white 30000mcd [1] LEDs

and set about building the LED modules on a

small piece of stripboard.

The light output of LEDs is rated in either

candela (also candle) or lux, with the candela

being the more common. Both are a measure of

luminous intensity. The higher the candelas/lux,

the brighter the light. Standard LEDs emit only a

modest amount of light, not even 1 candela.

Showing the new LED modules attached

:feature Micro Simon
15

:featureMicro Simon
39

micromag.cc/contribute

https://micromag.cc/contribute/

Python Debugging:
Ninja Tips And Tricks

You’ve just finished writing your latest Python

creation for the micro:bit. You’re trying out

some new Python features you’ve just read

about, and now you wait with joyful anticipation

as the LED on the back of the micro:bit continues

to blink as your program loads. Finally, the

blinking stops, your program is loaded, and then

– what is this? Is it not working? In an instant,

you go from joyful anticipation to a feeling of

confusion, disappointment, and maybe even

frustration. No worries, with this article as your

guide, you will be well on your way to becoming

a confident Ninja Debugger, able to confront the

most stubborn of bugs.

Ready to begin? Take a deep breath, inhale the

confidence and exhale those buggy negative

feelings. Now you are ready to walk the path of

a Ninja Debugger.

So What Exactly Is A Bug Anyway?
A bug is simply a programming error,

inadvertently introduced into a program by the

programmer. Essentially there are 2 types of

bugs, syntax errors, and run-time errors

(sometimes known as logic errors).

Syntax Errors
A mistyped Python keyword or a misspelt

variable name are examples of syntax errors.

Forgetting to indent your code properly is

another example of a syntax error. There are

many types of syntax errors, but the good news

is that there are tools available to locate and

identify syntax errors for us. In this article, we

will use the mu editor to find syntax errors.

Correcting a syntax error found by mu is as

easy as going to the line that mu identified for

Python Debugging Techniques For
The micro:bit

You Will Need:
- A micro:bit and USB cable

- mu-editor installed on your PC

(https://codewith.mu/)

:feature Alan Yorinks

@BrassFigLigee

I am an avid open source
programmer. Checkout s2m,
(go.micromag.cc/s2m) a program
that allows you to control your
micro:bit using Scratch 2.0 on
Windows, Mac and the Raspberry
Pi.

40

https://twitter.com/BrassFigLigee
https://go.micromag.cc/s2m

us, modifying the code and then rechecking that

our changes are correct. Easy-Peasy – minimum

stress.

Run-time Errors

Run-time errors occur while the programming is

running. An example of a run-time error is one

that executes an illegal operation. Attempting to

divide an integer by zero is an instance of an

illegal operation. With this type of error, the

interpreter “throws an exception” that identifies

the cause of the error and the line number on

which it occurred. In the case of the micro:bit,

the exception information is scrolled across the

display. This type of bug is usually as easy to

correct as a syntax error since the interpreter

informs us of the offending line number and the

cause of the error. The only difference is, that

this bug is not found until the program is run.

We will demonstrate this very bug in just a bit.

Another type of run-time error is a code design

error. For example, let’s say, we’ve written a

program that accepts a value expressed in grams

and we want the program to convert that value

to ounces. When we test the program, we notice

that the result returned is not the expected

value. With this type of error, we need to dig into

the code. Perhaps we selected the wrong

conversion formula to use, or perhaps we are

using the correct formula but when we

converted the formula to Python code, we

introduced a bug. Run-time design errors can be

challenging to fix because we need to become

“code detectives “ to figure out their cause. This

takes practice, and with experience, becomes

easier and easier to do.

Finding And Fixing Syntax Errors
Using The Mu Editor
Now that we know what bugs are, let’s use the

mu editor to find and squash some syntax

errors!

If you haven’t already done so, install the mu

editor on your computer and then start it.

from microbit import *

a function to display some images
def show_some_images()
 # a list of images to show
 the_images = [Image.SMILE, Images.YES,
image.NO]
 # loop through all the images and display each
 # one with a 1 second delay between each
image
 for an_image in the_images:
 display.show(an_image)
 sleep(1000)
call the function to display the images
show_some_images()

Next, copy and paste the following code into mu.

:featurePython Debugging
41

This code contains several syntax errors. Let’s

use the mu editor to find the errors for us. Click

on the “Check” button at the top of the mu

editor. Mu will show all of the syntax errors it

finds.

The indentation errors identified on the lines 5

and 6 that were identified when we first clicked

“Check” are no longer there, and now some new

errors for line 6 have been identified. What is

going on? Here’s the story - sometimes a single

syntax error will have a cascading effect on lines

below the error. Once we fix the initial error, the

cascading errors may disappear, and when we

recheck the code the next true error will be

identified.

Now it’s your turn. Fix the errors on line 6.

Trying fixing each one separately and then

check after each fix to make sure you’ve

correctly fixed the error. Then click “Check” a

second time to continue checking the file for

any additional errors that may still be lurking.

When you have fixed all the syntax errors, click

on mu’s load button to install and run the

program on the micro:bit.

You should see the micro:bit display the 3

images on the display.

Finding And Fixing Runtime Errors
Run-time Exception Errors
Let’s purposefully create a program that will

Let’s fix the first error which occurs on line 4 by

adding a colon at the end of the line. After fixing

this error, click on “Check” again.

The syntax error on line 4 has been fixed, but

notice that now all the other errors identified

when we first clicked “Check” seem to be gone.

When we fix a syntax error, and click on

“Check”, the mu editor will limit the check to the

lines that we modified. We need to click “Check”

again to check for any additional syntax errors.

:feature Python Debugging
42

Let’s purposefully create a program that will

generate the run-time error that occurs when we

divide an integer by zero.

from microbit import *

divide a number by zero
dividend = 5
divisor = 0

an illegal operation - divide by zero
this will "throw" a ZeroDivsion
if dividend/divisor == 0:
 display.show(Image.YES)
else:
 display.show(Image.NO)

finally we would re-flash the micro:bit.

AN IMPORTANT NOTE: Before flashing the

micro:bit, make sure to click the REPL button to

hide the REPL window. If the REPL window is

open, mu will not allow your to code to be

flashed That is because both the REPL and the

flash utility use the serial port. Only one of these

utilities can be active at a time.

Check the file for syntax errors and then flash it

to the micro:bit by clicking the Flash button.

Python recognizes that dividing by zero is an

illegal operation and will “throw” an exception.

The exception and its information are scrolled

across the micro:bit display. Because it is

sometimes difficult to read the scrolling

exception information, there is an easier way to

view the exception information.

On the mu editor, click the REPL button. This will

open a window at the bottom of the editor that

displays the exception information. We see that

on line 9 a ZeroDivisionError occurred. We

would then first modify our code so that this

illegal operation did not occur, then check the

changes for syntax errors and if there are none,

Run-time Design Errors
We discussed this type of error earlier using the

gram to ounce converter example. This was an

example of a pure software bug. For pure

software bugs, it is sometimes easier to copy the

code to your desktop computer and use a

debugging program such as Thonny or PyCharm

to isolate the problem. When fixed, you can copy

the corrected code into mu and try out your

changes. On the rare occasion, you may

encounter a bug that is due to an interaction

with the hardware on the micro:bit. The

hardware is not the problem, but the software

interaction with the hardware causes the bug.

Here’s an actual case of this type of run-time

design error that I encountered. When I released

s2m, a program that allows one to control a

:featurePython Debugging
43

understand the exact cause, but to help isolate

the cause, I commented out the code that was

reading pin 0 in the loop. When I did this, I could

fully control the LED, both on and off through

Scratch. So somehow reading pin 0 shortly after

setting pin 0 high would turn it off. It took a

little digging and reading some hardware

documentation, but the reason for the bug was,

that even though as I was setting the pin to be an

output pin, when the read of the pin came along,

unbeknownst to me, it changed the pin mode

back to an input pin which turned off the LED. A

pin cannot be both input and output at the same

time.

So what was the fix? I added some logic that

when a pin was set as an output pin, an entry

was marked in a table to prevent that pin from

being scanned for input data. The fix was easy,

the determination of the problem was

complicated.

The lesson learned here is that sometimes, by

disabling code by (just add a leading # character

to “comment out” the code), can help to isolate

the cause of the problem.

How To Determine If A Section Or
Line Of Code Was Executed
Sometimes, it is helpful to know if a section of

your code is being executed. For example, you

may wish to know which branch of an if/else

statement is being executed. A common

technique to accomplish this is to add a print

statement to each branch. This technique works

well when you are debugging on your desktop

micro:bit using Scratch 2.0 (on Windows, Mac or

Raspberry Pi), I accidentally introduced an

interesting bug. s2m: go.micromag.cc/s2mdocs

One of the features of the s2m program is to

allow one to connect a digital output device,

such as an LED, to pins 0, 1 or 2 of the micro:bit

and then control the LED from a Scratch script.

When I did so and turned the LED on, it would

turn itself off shortly thereafter. This was a bug

– the LED was supposed to stay on until it was

commanded to turn off.

In the case of this bug, the micro:bit hardware

was clearly involved, and so some analysis was

needed. It was curious that I could turn the LED

on, but it would quickly extinguish itself. The

question was, what in my code was

“automagically” turning off the LED? If I turned

the LED back on, it would turn itself off again. So

I started to think and realized that the problem

seemed to be periodic. The LED would extinguish

itself in the same amount of time each time it

was enabled. So, I checked all of the code that

called sleep() and I did not immediately see any

problems. Giving the problem some further

thought, I remembered that s2m allows one to

connect pins 0, 1 and 2 as inputs to things like

switches, and it monitors those pins and reports

back to Scratch. The monitoring is done within

the main loop of the program which contains a

short sleep() instruction. So I deducted (not so

elementary my dear Watson) that the problem

must be somewhere in the loop section that was

reading the digital pins. I still did not

:feature Python Debugging
44

https://go.micromag.cc/s2mdocs

5. If you are having problems figuring out

how to fix a bug, avoid frustration:

1. Take a break – go outside and play for a

while. At the very least, step away from

the computer.

2. Ask a friend, parent or teacher for

help. Sometimes we are so close to the

problem, we can’t see its solution.

Fresh eyes can help.

6. Remember, debugging is a skill that takes

practice and determination to master.

Each time you successfully squash a bug,

your debugging skills get stronger. Stay

on the path, and you will become a

Debugging Ninja.

computer, but the micro:bit does not have a

“print” statement to use. To get around this

limitation, instead of printing, you can display a

different image on the micro:bit for each

branch. This is an easy workaround to help you

get some useful clues as to how your code is

operating.

The Take-Away
Now that you understand some of the types of

bugs you may encounter in your programming

adventures, and how to deal with them, let’s

summarize what you have learned.

1. Always check for syntax errors using a

tool like the mu editor before flashing

code to the micro:bit.

2. When a syntax error is found, fix each one

from the first to the last, one by one, and

then rechecking as you go along.

3. For run-time errors, use the REPL to

display any possible exceptions thrown by

Python.

4. For design type run-time errors, try to

isolate the area of code where the error

might be occurring.

1. Use the display to identify if a line of

code is being executed.

2. Comment out the code to see if a

specific line of code is the cause of the

issue.

:featurePython Debugging
45

micromag.cc/donate

https://micromag.cc/donate

micro:mag is run by a team of
dedicated volunteers - but we still
need to cover our costs. Donating
helps us continue to deliver the
community micro:bit magazine free
of charge.

Help us cover
the costs of
micro:mag

Donate on
 :

micromag.cc/donate

http://micromag.cc/donate

Using the micro:bit as a game
controller with Microsoft
Kodu Game Lab
How to program the computer games you build
in Kodu to use a micro:bit as a game controller.

You Will Need:
- A micro:bit and USB cable

- Kodu Game Lab installed on your PC

(go.micromag.cc/kodudwnld)

In this tutorial, you will learn to program your

Kodu games to respond to the micro:bit being

used as a game controller.

You will program the micro:bit to display

outputs as well as use its accelerometer to

control the player in your game. This tutorial

assumes that you already have some experience

of building games in Kodu.

A bit about Kodu and the micro:bit
If you haven’t come across Kodu Game Lab

before, it is a great piece of software from

Microsoft and even better – it’s free! In Kodu,

Use your Micro:bit with Kodu Game Lab to transform your Micro:bit into a game controller

:make Siobhán Morgan

@koduclassroom
 koduclassroom.co.uk

Siobhán loves using Kodu,
micro:bits and Crumbles to
teach children to code. She
also thinks robots are cool.

47

http://go.micromag.cc/kodudwnld
https://twitter.com/search?q=%40koduclassroom&src=typd
https://koduclassroom.co.uk/

Taking the project further:

you can build your own 3D computer games on

your PC. It uses a visual programming language

involving writing lines of ‘code’. I have taught

pupils from 7 upwards to use this software with

a micro:bit and it is amazing how quickly they

get the hang of the software. The ‘code’ is like a

sentence and as a result, it has to make sense in

order to work! The code is written in the form of

When… Do… so an action is triggered to take

place when an event occurs.

Setting up your micro:bit to work
with Kodu
When you attach your micro:bit to your

computer using the USB cable, you should be

prompted to install an additional driver. If you

are planning to do this using networked

computers, you may need to ask your

administrator to do this for you. Once the driver

is installed, Kodu is ready to use the micro:bit as

a controller.

Build a game

This dialog box will appear when you attach your Micro:bit
prompting you to install the driver

Build a simple game in Kodu with a clear objective and some
obstacles for your character to avoid.

First, you will need to build a basic game in Kodu.

I made this simple game where the player is the

green cycle and the objective is to reach the

castle at the end of the purple path. All of the

black Kodu characters have been programmed to

always move on a path. This means they will act

as an obstacle for my green cycle to overcome.

If your having trouble using Kodu,
Siobhán has written some tutorials
over on her website. These should help
you get used to the Kodu interface:
go.micromag.cc/kodubasic

You can build a much more exciting game using

many more objects and characters so have a

great time exploring the software and creating

amazing worlds.

Program your enemies to move by themselves on a path.

:make micro:bit and Kodu
48

http://go.micromag.cc/kodubasic

see that the micro:bit image now appears. If it

doesn’t, it shows that the driver hasn’t been

installed.

Once you click on the micro:bit symbol, you

should see that lots of options for possible

micro:bit inputs appear:

Programming the cycle to respond
to the micro:bit
First, you will want your player to move when

you move the micro:bit. This will use the

accelerometer so that it can sense which

direction you want your character to move in.

When you go to program your cycle, you should

see that the micro:bit image now appears. If it

doesn’t, it shows that the driver hasn’t been

installed.

If you can see the Micro:bit symbol, your driver has installed
correctly

To program the cycle to move when you move

the micro:bit, here is the code that you need:

Some of the ways you can use the micro:bits inputs to control
your player in the game

Program your cycle to respond to the movement of the micro:bit.

Now if you press the Escape key twice or press

the play mode, you can enter ‘game mode’ rather

than the editing mode you have been using to

create your game. Sometimes, when you go to do

this, the micro:bit may start flashing on the back

but that just means that it is transferring your

program to the micro:bit. Now you can test your

game.

Once you have programmed the cycle to move

using the tilt function, you can also program it to

respond to other inputs, including the buttons,

the micro:bit recognising that it is being shaken,

or the pins being used. You can also take

:makemicro:bit and Kodu
49

Programming the cycle with this code means that

it does the following:

1. WHEN the Micro:bit is tilted, the cycle will

move

2. WHEN the Micro:bit is shaken, the cycle will

jump

3. WHEN the B button is pressed, the cycle will

shoot multi-coloured blips that will cause the

target to explode.

4. WHEN the A button is pressed, the Micro:bit

displays a helpful message to the player: ‘go

to the castle’

5. WHEN the cycle bumps a black Kodu, the

Micro:bit displays ‘oh no!’ on its LED display

Another way of using the micro:bit is by

programming something to happen when you

hold one of the input/output pins at the same

time as holding the ground pin (GND). In the

code shown here, if you hold Pin 0 at the same

time as holding the GND pin, your cycle will

change to red instead of green.

Now that you know the basics, it’s over to you

to create interactive Kodu games using the

micro:bits input and output capabilities.

Let’s take the project even further, see what

you can do with the information you’ve

learnt.

advantage of the micro:bits output functions by

programming it to display an image or a scrolling

message on the LED display. To program the cycle

to move when you move the micro:bit, here is the

code you need:

A basic program to control the cycle so that it responds to the
micro:bits inputs.

Become a human circuit by using the input/output pins on the
micro:bit

Become a human circuit!

Taking the project
further:
There are all sorts of ways that you can

use you’re micro:bit to interact with

Kodu. This tutorial from the Kodu Team

(go.micromag.cc/koduadvanced)

even shows you how to add an LDR (Light

Dependant Resistor) to control the light

level in your game world!

:make micro:bit and Kodu
50

https://go.micromag.cc/koduadvanced

:make Martin Woolley

@bittysoftware
bittysoftware.com

Carbon Dioxide monitoring
and visualisation

Learn how to use a BBC micro:bit, a sensor and
smartphone app to monitor and visualise carbon
dioxide (C02) levels in the environment.

Bitty Data Logger charting C02 readings from the sensor connected to the micro:bit in real-time.

Martin loves to code and
make magic things happen
with Bluetooth wireless
communications and was
lucky enough to be involved
in creating the BBC micro:bit
as the team’s Bluetooth
specialist.

You Will Need:

- 1 x BBC micro:bit
- 1 x CozIR®-A sensor from GSS – see

go.micromag.cc/buysensor
- 1 x Android or iOS smartphone or tablet

with Bluetooth 4.0 (minimum)
- The Bitty Data Logger application from

Bitty Software running on the
smartphone see
go.micromag.cc/bittydatalogger

C02 monitoring has all sorts of important,

real-world applications. It’s used in food

production, healthcare and even in places like

space stations! A micro:bit can be connected to a

C02 sensor and with the right code, collect C02

levels and report them over Bluetooth to a

smartphone app for visualisation. In this

tutorial, I’ll describe the general approach

involved, highlighting how the components talk

to each other. If you’d like to have a go at

51

https://twitter.com/bittysoftware
http://www.bittysoftware.com
https://go.micromag.cc/buysensor
https://go.micromag.cc/bittydatalogger

Taking the project further:

making this project, full details, including

source code can be found at

go.micromag.cc/fullCO2project

About Bitty Data Logger
Bitty Data Logger is an application for iOS and

Android devices which can capture, chart and

share data communicated from a micro:bit

using Bluetooth. The data could be from an

internal sensor like the micro:bits

accelerometer or from an external device

connected to the edge connector like a capacitor

or a C02 sensor. Bitty Data Logger makes the

invisible visible!

Connecting the C02 sensor
The CozIR®-A sensor has a number of pins on its

underside. The important ones are the GND, 3.3V

power, receive (RX) and transmit (TX) pins. The

TX and RX pins allow data to be transferred, one

bit at a time between the micro:bit and the

sensor. Communication which takes place one

binary bit at a time is called serial

communications.

CozIR Micro:bit
GND GND
3V3 3V
TX RX (pin 1)
RX TX (pin 0)

How to connect the CozIR®-A sensor to a micro:bit

Communicating with the CozIR®-A
Sensor
The GSS CozIR®-A sensor has a set of commands

which a device like our micro:bit can use to talk

to it. Talking involves sending commands to the

sensor’s RX pin and listening for the result

involves receiving data from the sensor’s TX pin.

For example, sending the command G\r\n to the

sensor tells the sensor to calibrate itself for more

accurate readings. \r\n represent the special

characters carriage return and line feed which

all the CozIR®-A commands must end with.

Communicating with Bitty Data
Logger
Bitty Data Logger uses the micro:bit’s event

system. The event system is what makes it

possible for things happening (i.e. events) like a

To connect the CozIR®-A to a micro:bit, you make

connections like this:

:make CO2 monitoring and visualization
52

https://go.micromag.cc/fullCO2project

button being pressed, to trigger code you’ve

written. The event system lets different parts of

the micro:bit system communicate with each

other. You can think of this as being like

someone shouting whenever something of

interest happens:

Hey! Someone just pressed Button A!

One of the nice things about the event system is

that software components that generate or

respond to events do not have to be inside the

micro:bit! They can be connected to the micro:bit

over Bluetooth using something called the Event

Service. All MakeCode applications which use the

Bluetooth package, automatically have the event

service built into them, meaning that events can

be used for bidirectional communication

between the micro:bit and the other device,

connected over Bluetooth.

Various event types are used by Bitty Data

Logger. These are the ones which are used in

communicating CozIR®-A sensor data:

See go.micromag.cc/binarynums

to learn more about binary numbers and bits!

Code
We can think of the code needed as falling into

two parts; we need some code that will send

commands to the sensor and which will receive

data back using serial communications. We also

need code which will put the C02 data into the

right format for Bitty Data Logger and send it

over Bluetooth as an event.

1) Obtaining Data From the Sensor
Usually, if we’re performing serial

communications with a micro:bit, data passes

into and out of the micro:bit via the USB socket.

In our case, we want to read and write to the TX

and RX pins that connect the sensor to the

micro:bit. This means we have to redirect serial

communications to the micro:bit pins we’ve

connected the sensor to. In our case, that will be

pins 0 and 1. This MakeCode block will do what

we need:

Redirecting serial communications to
use micro:bit pins 0 and 1

We then need to send the appropriate

commands to the sensor. Luckily, we can avoid

knowing all the details, because Simon Monk

(go.micromag.cc/simonmonk) wrote some

custom MakeCode blocks that take care of all the

:make CO2 monitoring and visualization
15

:makeCO2 monitoring and visualization
53

https://go.micromag.cc/binarynums
https://go.micromag.cc/simonmonk

The CO2 (PPM) block returns a C02 level reading in

parts per million.

2) Sending Data to Bitty Data Logger
After obtaining a C02 reading, our code calls a

function transmitSensorData. This function is

where the data is put into the right format and sent

over Bluetooth. This might not be obvious from the

code but all that’s involved is creating a micro:bit

event with the right values and by magic, it will be

sent to Bitty Data Logger!

nitty-gritty. Our code needs to loop inside the usual

forever block, requesting CO2 readings and then

sending the data over Bluetooth to Bitty Data

Logger, like this:

Repeatedly reading C02 levels from the sensor and then transmitting
the value over Bluetooth

Combining a pin number and sensor reading and
creating an event which will be sent over Bluetooth.

The Full Project
Hopefully, this article has given you a sense of

what’s involved in using sensors and Bluetooth to

capture and visualise data on a smartphone. There

is, of course, a bit more involved than has been

covered here. Find out more in the box on the right

Taking the project
further:
Your next step should be to try the full
project, which you will find at:

go.micromag.cc/fullCO2project

:make44
CO2 monitoring and visualization:make CO2 monitoring and visualization

micromag.cc/contribute

54

https://go.micromag.cc/fullCO2project
https://micromag.cc/contribute/

Make your own blocks with
Microsoft MakeCode
Makecode is a great environment which can be
expanded upon when you know how to create
your own blocks

You Will Need:
- A micro:bit and USB cable

- Makecode (makecode.microbit.org)

In this tutorial, you will learn how to create your

own blocks using two different approaches. The

first one takes a drag-and-drop approach using

the Functions category, and the other one uses

textual programming which will require a little

bit of Javascript. Or a lot, depending on your

needs. We will be developing a library of facial

emotions for the micro:bit in order to cover the

concepts and keep the Javascript to a minimum.

A bit about MakeCode
MakeCode offers a great environment for

learning how to code with the micro:bit. It is

simple enough for beginners to get started and

flexible enough that you can add to it once you

push your code a little further and suddenly feel

MakeCode is the main editor for people programming the micro:bit

:make
55

Nicole Parrot

@Cleo_Qc

Nicole hails from Hoth also
known as Canada. She enjoys
robots and Star Wars. Her
work with Dexter Industries
and Kids Code Jeunesse is all
about getting people to enjoy
robots.

https://twitter.com/Cleo_Qc

Taking the project further:

the need for special blocks. There are two simple

methods to add your own blocks to the

MakeCode editor:

1. The Functions category

2. The “custom.ts” file

First Approach:

Create a Function

Creating a function is the easiest method of

adding a block to MakeCode.

Textual programming is not required, only

blocks. This is conceptually the same approach

as creating a new block in Scratch. A couple of

easy steps will get you into a place where you

can start your function:

1. Click on Advanced

2. Click on Functions

This opens up a flyout containing a single grey

block:

Click on that single block, called “Make a

Function”, you will get a dialogue window:

Enter the name you want for your function.

Here, I called it “wakeUp”. Try to be as

descriptive as possible, without getting too long

a name. You can use spaces but, out of habit, I do

not. Click on the Ok button once you’re happy

with your name. A definition block has appeared

in your programming editor:

Let’s create a wake-up

animation. At first the

micro:bit is asleep, then it

yawns, checks left and

right to see what’s

happening, then it’s

happy to see you. In the

example here, it’s linked

to Button A so we can test

it at will but it would also

make sense to have it run

with the on start block.

It’s a bit long and clumsy

to keep in your code,

especially if we want to

use it in two (or more)

different places! The code

reference is on the left.

:make Create MakeCode Blocks
56

You can fill in this block with the animation we

created at the start. Either drag the blocks you

already did into this function block or, if you

haven’t created the animation yet, create it now.

 block sequence!

● Much easier to follow what’s going on.

“Wake up” is more descriptive of the

intent of the animation so you’ll

remember what you meant to do even a

few months down the road.

● Much easier to add extra code without

getting lost in what we’re trying to

achieve.

● Much easier to use the same animation in

more than one place. Maybe you want your

Micro:bit to also wake up when shaken.

● Much easier to keep your programming

area clean. You can move the function

defining block outside of the visible area

(lower down or to the right) so your

application stays uncluttered.

Second approach: the “customs.ts”

file

This second approach will let us hide the details

of our function code even more. (less clutter is

always good). But also, it will let us re-use code

easily from one project to the next. However, it

comes at a price, we need to go to textual

programming, at least a little bit.

Let’s grab our current code first. With the above

project still on your screen, switch to “Javascript”

and highlight the textual code for our function.

Start from the first curly bracket up to the

corresponding end curly bracket (which will be

on a line all by itself). Do not include the curly

brackets themselves (the { and } characters).

Once you think you

have everything, it’s

time to try it out!

Go back to the

“Advanced” section

and click on

“Functions” again.

Now the flyout has a

new block, with the

name you have

chosen, your own

very special block!

Drag it in the On Start

event to test it out.

I’ve also used it in the

Button A block now

that it no longer takes

all that space!

This gives us code that is

● Much easier to understand than our long

:makeCreate Makecode Blocks
57

Taking the project further:

They are indicated by arrows in the following

image:

Click on “Explorer”, and the + sign next to it, as

indicated here (make sure you’re still in

Javascript mode):

Accept the dialogue that pops up:

A new file containing Typescript code has just

been created for you. It’s called the “custom.ts”

file and we will be adding our code in there. You

can also notice too that a new category has been

created! It’s called “Custom” and shows up

between the “Basic” category and the “Input”

Category.

In the “custom.ts” file, there’s a lot of code that

we won’t need but it doesn’t hurt to keep it for

now. Look for “// Add code here” on line 27. You

will be pasting your code right after this line,

before the curly bracket } on the following line.

Let’s change the name of the default function

from foo to wakeUp (on line 26, just before the //

Add code here line. We can remove what’s in the

parentheses too as our code is simple.

And you’re done! This is it, you’ve done it!

If you go back to Blocks mode, you will see your

new block under the Custom category! You can

get rid of the cumbersome function definition

we created earlier. We no longer need it, and it’s

taking room for nothing.

export function wakeUp(): void {

:make Create MakeCode Blocks
58

What Next?

But what about the fib value block?

There’s an extra block in the custom category.

You can get rid of it if you want.

1. Go back to Javascript

2. Click on Explorer

3. Click on custom.js

4. Scroll to the end of the file

5. You do need to keep the very last line,

which has a closing curly bracket: }. Make

sure you leave that one in.

6. You can delete the three lines above it,

that start with export function fib

(remember that fib was the name of the

block we want to get rid of!)

When you go back to Blocks mode, there will

only be one block now in the Custom category.

I hate green

Then you’re in luck as you can change the colour

of the custom category.

Look for a line that reads

The line just above it has colour =#0fbc11 where

#0fbc11 is the green colour. You can replace it

with any colour you like based on its colour code.

See https://html-color.codes/ for ideas. You

must use the American spelling for colour, and

keep the # sign in. You can also change the name

if you edit the word “custom” for “animations”

for example although this will break any

program you may have on your screen. (you can

simply swap out the blocks).

How do I create more blocks?

You can create as many blocks as you want.

Just after the line that says “namespace custom

{” (on line 18) you can add this code:

How can I share my blocks?

Here's a simple way of sharing your custom

blocks. Empty any blocks you may have in the

makecode editor but do keep your custom.ts file!

Click the Share button and copy the link it’s

giving you. Give that link to your friends.

Is that an extension? ?

You’ve done a lot of the work required to create

an extension! However, for a complete extension

you need GitHub. In the meantime, you’ve

already gained a lot of knowledge! Now you have

enough knowledge to handle long programs in

Makecode, by hiding some complexity behind

your own blocks. The sky is the limit!

Attention:
Your custom.ts file is part of your current
project but you may want to keep a copy of it
for re-use in other projects, or sharing with a
friend, or simply as a backup, should
something happen to your project. Your best
approach is to copy/paste it into a file on your
computer and keep it safe. You can also share
it with your friends, as they can now
copy/paste it into their own custom.ts file.

namespace custom {

//% block

 export function myownblock(): void {

 // add code here

 }

:makeCreate Makecode Blocks
59

:make Jody Carter

@codeyjody

Micro:melt - just exactly how
hot is it!?!
How to make a weather station in your garden
with two micro:bits using the radio functionality.

You Will Need:
- 2 x micro:bits
- Battery pack with JTS connection
- Micro USB cable
- Sparkfun weather:bit,

https://www.sparkfun.com/products/14
214

Now that summer’s officially here it’s time to dig

out the flip-flops, hanky on the head and get the

factor 50 on. Once you’ve done that why not

make a nifty little weather station relay - that

way you won’t have to stand in the boiling

sunshine to find out how hot it is!

First, connect your micro:bit to the weather:bit,

this is the Weather Station. The other micro:bit

will be the Receiver.

Next, go to microbit.org and use the Javascript

Blocks editor; we’re going to work on the

Weather Station first.

No matter what the weather, always keep up to date with the conditions with this micro:bit weather station.

Jody is a primary school teacher
and computing leader for GLF
Schools, CAS Master Teacher,
Raspberry Pi certified educator,
coding enthusiast; trying to
make computing enjoyable and
engaging.

60

https://twitter.com/codeyjody

Step 1: Add Weather:bit package
Click on Add Package and type in “Weather bit”

to search. Click on the weather:bit and it’s added

to the main menu. You will find Weatherbit at

the bottom of the main menu.

Step 2: Add the weather blocks
The Weather Station will be activated when it

receives the activation message (in the form of a

string sent to it). It will take 3 readings:

temperature, air pressure and humidity, and

send these back to the receiver using the

micro:bit’s radio feature.

Let’s have a look at the code…

When the receiver sends the activation message

the Weather Station will display a message then

send the three data readings. The readings are

sent as numbers so make sure you use the radio

send number blocks. Note that the raw readings

on the weather:bit need to be converted into

something more meaningful.

Your Weather Station Code Blocks should look

like this:

Start the weather station monitoring the weather.

First, tell the weather:bit to start monitoring the

weather. This is followed by setting up the radio.

The same group must be set by both sending and

receiving micro:bits. Secondly, we want

maximum power so that the weather station can

be read over long distances.

Step 3: Add radio blocks

Read the measurements and send back.

The complete code for the Weather Station.

Save your project then drag the .hex file onto the

micro:bit icon in your file system. Now start a

new project and name it Receiver.

Step 4: Create Receiver project
The Receiver has 2 jobs: send an activation

message to the Weather Station to tell it to send

the data across and to display the data it

receives in return.

To begin with, set the radio group and strength

to the same as the Weather Station. This ensures

that they can talk to each other. Also, show a

little smiley face to say that everything’s good.

:makemicro:bit Weather Station
61

The next block is where to send the activation

code. This just needs to be a string so could say

anything at this point. The set

measurementCounter to 0 is a counter we use in

the next code block which we will look at now.

Save the project, download the .hex file and drag

it on to the Receiver micro:bit. You should see a

smiley face once completed. Make sure both

micro:bits are powered up and press button A on

Receiver. The Weather Station should say

‘Sending!’ and then the Receiver will scroll

through the 3 different measurements.

Send the activation message to the Weather Station.

In the same way that we used on radio received

on the Weather Station to start reading the data,

it’s used here to display the data once it’s been

received. Let’s look at them in more detail.

When the Weather Station sends through the

data it makes 3 separate calls, temperature,

humidity and pressure. The data sent through

will always be in that order so set a counter -

measurementCounter - so we know how many

readings have been sent. An array with the 3

reading names stored in it is looped through and

kept track of using measurementCounter. This

makes sure that temp is displayed for the first

number received, pressure for the second and

humidity for the third. If another request is sent

through to the weather station button A is

pressed and sets the counter back to 0.

Upon receiving the measurements display them to the user.

:make micro:bit Weather Station
62

The 4tronix Bit:Bot And
Bit:Commander at 'Formula
One in Schools'

Pit Stop entertainment!
In this tutorial you will learn how I coded the Bit:Bot
and Bit:Commander to race two Bit:Bots.

You Will Need:
- micro:bit
- 4tronix Bit:Bot
- 4tronix Bit:Commander
- Batteries
- Micro USB cable
- Access to the python HTML Editor

Learn how I coded the 4tronix Bit:Commander as

a controller for the 4tronix Bit:Bot for a race.

It was part of the Formula One in schools

competition. I used Python to code the Bit:Bots

and Bit:Commanders after having been asked if

I could do something with a Bit:Bot during the

pit stop.

Introduction
Each class in Year 5 were asked to design and

make a 3D printed Formula One car. Using

SolidWorks each team designed a car and gave it

a name. The designs were then 3D printed and

The Bit:Bots on race day as our pit stop entertainment! Each one was controlled with a Bit:Commander.

Sam Watson

My name is Sam and I am 10
years old. I live in Yorkshire
and love to code! I wrote some
code that was run on the ISS for
the Astro Pi challenge.

:make
63

painted, axles were fitted and wheels added.

We also had to plan merchandise, entertainment

for a pit stop, and create a portfolio as part of the

competition.

One of the team members thought that I could

code Bit:bots for our pit stop. I agreed and

started to work on the code during each team

meeting. Before long I suggested using the

Bit:Commander as a controller instead of the

micro:bit alone. I then began to work on the

code at home as well as in the meetings at

school.

The 3D printed F1 car ‘The Dark Star’ designed using
SolidWorks.

Flags and bookmarks with our ‘Dark Star’ logo on to promote our
team, and the stickers that our guests and visitors were given.

One of the posters to promote The Dark Star.

#Bit:Bot Code

from microbit import *
import radio

chnl = 10
radio.config(channel=chnl)
radio.on()

def Drive(lft,rgt):
 pin8.write_digital(0)
 pin12.write_digital(0)
 if lft<0:
 pin8.write_digital(1)
 lft = 1023 + lft
 if rgt<0:

The Bit:Bot
First of all, I had to programme the micro:bit for

the Bit:Bot. Here is the code I used:

:make44
Formula One In Schools:make Formula One in Schools

64

 rgt = 1023 + rgt
 pin12.write_digital(1)
 pin0.write_analog(lft)
 pin1.write_analog(rgt)

while True:
 s = radio.receive()
 if s is not None:
 if s=="N":
 Drive(800,800)
 elif s=="S":
 Drive(-800,-800)
 elif s=="NE":
 Drive(800,200)
 elif s=="NW":
 Drive(200,800)
 elif s=="SE":
 Drive(-800,-200)
 elif s== "SW":
 Drive(-200,-800)
 else:
 Drive(0,0)
 sleep(20)

 if a and dx<150:
 # forwards left
 display.show(Image.ARROW_NW)
 radio.send("NW")
 elif a and dx>850:
 # forwards right
 display.show(Image.ARROW_NE)
 radio.send("NE")

 elif b and dx<150:
 # backwards left
 display.show(Image.ARROW_SW)
 radio.send("SW")
 elif b and dx>850:
 # backwards right
 display.show(Image.ARROW_SE)
 radio.send("SE")
 elif b:
 #backwards
 display.show(Image.ARROW_S)
 radio.send("S")
 elif a:
 # forwards
 display.show(Image.ARROW_N)
 radio.send("N")
 sleep(20)

The Bit:Commander
Next, I had to code a micro:bit for the

bit:commander to send radio signals to the

bit:bot. Eg. North, South, North East, North West,

South East, South West. Here is the code I used:

Bit:Bot controller code.

from microbit import *
import radio

chnl = 10
radio.config(channel=chnl)
radio.on()

while True:
 a = pin12.read_digital()
 b = pin14.read_digital()
 dx = pin1.read_analog()

Preparation
The day before race day the team manager and I

realised we needed a track to race the Bit:Bots on.

We started to make it from some cardboard

boxes. Unfortunately, we ran out of time in

school! So I brought all the pieces of track home

to finish making it. I spray painted the track

black, put it all together and added masking tape

road markings to it.

:make
43

Formula One in Schools:makeFormula One In Schools
65

I had a last-minute hitch on the eve of the race

when I discovered we were a Bit:Commander

short! I then got in touch with a friend who

could lend me one!

Race Day
On the day of the competition I went into school

early with the track, Bit:Bots and

Bit:Commanders and along with the rest of the

team we prepared our track, merchandise,

portfolio and the Bit:Bots and Bit:Commanders.

As soon as people were coming into the hall they

were spotting our pit stop and were eager to give

it a go. Judges and visitors were all impressed

and were curious to find out more about the

Bit:Bots and Bit:Commanders! People had lots of

questions about the Bit:Bots such as: ‘Are these

Bit:Bots powered by BBC Micro:Bits?’ and ‘How

long did it take to code these Bit:Bots?’ I

explained how I had programmed them and that

I had done lots of work on it at home too. Our 3D

printed F1 car didn’t win the time trials on the

day but we had lots of fun!

Making the track from cardboard boxes! Sprayed and put together
at home late the night before the race!

The ‘Formula One in Schools’ track used for the time trials for the
3D printed F1 cars.

:make44
Formula One In Schools:make Formula One in Schools

66

Who needs a $200 Smart Display when you have
a micro:bit, Pi, and phone already lying around.

You Will Need:
- micro:bit
- Raspberry Pi 3 or Zero W
- A Google Account
- A Phone with the Google Assistant

on the display. Use it to remind you to do

something, show you the current weather, or

keep up with stocks, if that’s your cup of tea. The

best part? It’s very low cost of only $25.

go.micromag.cc/installNodeJs

What I used to build it?
Micro:mate is built with Node.js, which lets you

use JavaScript, the language that powers the

web, to write console applications, mainly

servers. It just so happens that Micro:mate isn’t

just one server, but two. One side interfaces with

Google and the other side talks to the micro:bit

through Bluetooth LE. I picked Node not only

:make Davit Markarian
 Davit is a 15-year-old

Armenian teen that has been
developing software since I
was 8. I have experience in
everything from C to game
development. I’m currently
working on my biggest project
yet: Lua for the micro:bit.

Micro:mate: Your Very Own
Smart Display

@UDXSDavid
udxs.me

In the search for a summer project, I built a cool

“Smart Display” that can show you the weather,

stocks, messages, date, and time. What makes it

cool? Well, it’s powered by the Google Assistant,

meaning you can ask any Google Assistant

compatible device (i.e a phone, Wear OS

smartwatch, or Google Home) what to show

67

https://go.micromag.cc/installNodeJs
https://twitter.com/UDXSDavid
https://udxs.me/

because I’m familiar with JavaScript but

because of NPM, the Node Package Manager.

NPM is known for having a package to

accomplish anything. NPM has everything we

need to not only talk to the micro:bit, but also to

run a web server that can communicate with

Google as well as retrieve information like

stocks (From Yahoo Stocks) and weather (From

OpenWeatherMap).

The other half of this project happens not on the

Pi, not on the micro:bit, but on Google’s cloud.

Specifically, we use Dialogflow, a service from

Google that lets you build AI agents that can

take queries, such as “Show me the weather” or

“Show me the stocks for MSFT”, and process

them, extracting parameters, such as “MSFT” or

“Brussels”, depending on the query. Because it’s

a Google product, it’s super simple to connect it

to the Google Assistant. On top of that, they also

have Cortana and Alexa support which requires

a bit more effort.

What can you ask it?
I wanted the display to show information that is

continually useful. I ended up adding Time, Date,

Reminder messages, Weather (which I’m most

proud of because of its fancy icons), and Stocks.

On top of that, you can also ask it to clear the

screen. You can browse the Dialogflow intents to

see what you can say.

:make Micro:mate - Smart Display

My plan for how everything would connect and interface.

The Dialogflow console is where agents are made and configured.

How do you set it up?
First, Go ahead and download the files from

GitHub go.micromag.cc/setup. Here, you can

find the code, the micro:bit program, as well as

detailed instructions. In an attempt to keep this

tutorial short and sweet, the code and detailed

instructions themselves are actually in the

README. Here, you can take a look at the general

list of steps:

1. On the Pi, Install Node

a. Install NVM

b. Install Node 8 through NVM

c. Update NPM

d. Enable sudo usage for Node/NPM

2. Install Prerequisites for using Bluetooth LE

68

https://go.micromag.cc/setup

3. Install all the required packages in the

micromate folder

4. Set up Dataplicity

a. Install it on the Pi

b. Set up tmux

c. Set up the Wormhole

5. Put the hex program on the micro:bit

6. Set up the Dialogflow agent

a. Import the zip file of the agent

b. Set the fulfillment URL

c. Configure Google Assistant

Integration

7. Set up the Assistant Action

a. Configure the name and details

b. Deploy it as an alpha and open the

link on your phone

8. Run the program

9. Ask the assistant whatever you want!

Look through the Dialogflow intents to

see what you can do.

What the server shows on the Pi when we get a request.

That’s it! Now, you can play around

and extend it as you wish.

Please check out my website

udxs.me

:makeMicro:mate - Smart Display
69

https://udxs.me/
https://udxs.me/

In this tutorial, we will be going through step by

step how to create a Remote-controlled Lego train

using 2 micro:bits and MicroPython. There are

two separate programs the remote code and the

motor controller code. The first section we will

look at creating the controller then we

The micro:bit Express
Take your Lego train and control it with Python
code. (Old and newer motors)

You Will Need:
⁻ micro:bit compatible motor controller

from Pimoroni: (Motor controller) find
out more information(link) buy link

⁻ I recycled the battery pack from the Cam
Jam Edukit 3 buy here link any generic
4.5 volt battery pack will be fine.

⁻ A Lego motor / Lego Train Motor

will create the code to control the motor.

About the motors

We will be using old 1980’s motors like below:

Chris Penn
 Chris is a CS teacher from

Warwickshire, everything that I
code either involves Minecraft
or something childish ☺

@ChrisPenn84

These motors are easy to pick up from site like Ebay,
Take a look online to see if you can pick some up for a
cheap price.

:make
70

https://www.kitronik.co.uk/5620-motor-driver-board-for-the-bbc-microbit-v2.html
https://shop.pimoroni.com/products/motor-driver-board-for-the-bbc-micro-bit
https://thepihut.com/products/camjam-edukit-3-robotics
https://twitter.com/ChrisPenn84

With the older motors they come with a cable

that connects the train motor to the battery

carriage, I unscrewed one end of the cable so

that I could feed the two wires into the motor

control board.

On the older motor to connect the motor to the

motor controller board, you will need to

unscrew the Lego metal pins to expose the two

wires then connect them to the motor one

sockets on the motor controller.

Newer power functions motor from 2005 like

below:

:make
43

with this newer style motor, which is what you

will find in most modern lego trains the wire

that comes from the motor has 4 wires that are

stuck together which then attach to a 1x1 lego

plate which attaches to the Lego Power

Functions battery pack. I wasn’t interested in

this so I cut the cable just before this and

stripped the wire back so you could see each of

the 4 wires. The two left ones were soldered

together and the two right ones were. This was

then soldered onto the existing Lego cable that I

had. This wasn’t necessary. The sellotape was to

protect the wires from touching.

The cable looked like this after it had been

soldered together and then connected to the

motor controller board:

On the newer style motor The wires were then

soldered together as above.

Stage 1:
Take the one of the two micro:bits and the motor

controller mentioned previously. plug in the

micro:bit into the motor controller as shown on

the next page:

The micro:bit Express:make
43

:make
43

Formula One in Schools:makeThe micro:bit Express
71

:make
43

Then find the 4.5-volt battery pack and connect

the wires from it into the motor controller

board. You can see below the red wire goes into

positive and black negative. Tighten the screw to

secure wires. Then get the wires from the Lego

train motor and connect them into the two

motor 1 slots and tighten the screws to secure

them in place. Again you can see below:

Stage 2: Coding the remote control
Next up, we need to create the code to get this to

work. Firstly we will code the remote, I have used

micro python and there are three methods you

can use to achieve this. Method one is installing

the ‘Mu’ editor which can be installed from here:

https://codewith.mu/ .

Method two is by using the web based editor

which can be accessed here:

https://python.microbit.org/v/1 or you can use

Edublocks, this uses/creates the same code but it

is drag and drop similar to Scratch, you may

prefer this option you can access this from:

https://microbit.edublocks.org/.

I used option 2 because I found it to be quicker for

what I needed. I will leave it for you to make up

your own mind.

Using option 2 I created the following code:

Next, you will need to add the batteries to the

battery box. Please make sure that it is turned

off so you don’t waste your battery.

Congratulations the wiring is sorted. Next up

stage 2 the code.

:make
43

Formula One in Schools:make44
The micro:bit Express:make The micro:bit Express

72

https://codewith.mu/
https://python.microbit.org/v/1
https://microbit.edublocks.org/

Next step is to load the code onto the micro:bit

that you will use for your remote, ensure that

you have plugged your micro:bit into your

machine. Then on the website select download

to download the hex file onto your pc like below,

it should appear like so:

:make
43

Congratulations you have now created your

remote controller.

Stage 3 The code to control the motor. As we did

in stage 2 you have three options to create your

code I chose option 2.

The code I created looks like this:

This is using the Chrome browser. Then left click

and click on show in folder:

Next up to get the hex file onto the micro:bit,

right-click onto the hex file and then select ‘send

to’ then select ‘micro:bit’ on the right-hand side.

This will then flash for 10- 15 seconds, you can

see this by looking at the back of the micro:bit

you will see an orange flashing light.

Now you will need to repeat the steps from stage

2 to upload your hex file onto the micro:bit.

The micro:bit Express:make
43

:make
43

:make
43

Formula One in Schools:makeThe micro:bit Express
73

Congratulations you should now be ready to test

your micro:bit Express. You will need to slide

this micro:bit into the motor controller slot like

below:

Now you will need to power the remote by using

plugging it into your pc. Then turn on the

battery pack connected to the motor controller.

If you click the on the ‘a’ button on the remote

and press ‘b’ to confirm the train should move 1

should be forward, 2 is back and 3 stop and 4 is a

coded path. When you get 3 and 4 it will reset to

0.

Congratulations you have now finished your

coded Lego train.

:make
43

Taking the project further

1. Why not try using a Raspberry Pi to

power the remote

2. Try creating your own coded path.

3. Have a go at some more projects on

Chris’ blog:

go.micromag.cc/jammy

:make
43

:make
43

Formula One in Schools:make44
The micro:bit Express:make

43
:make

43
Formula One in Schools:make44

The micro:bit Express:make The micro:bit Express
74

Body position sensors provide a signal that

indicates to the system the patient's sleeping

posture. In this project, you build a wearable body

position (posture) sensor with a micro:bit. You

also develop a simple Android app with MIT App

Inventor to monitor patient’s posture.

Building a Body Position Sensor
Easy to build wearable body position sensor and an Android app to
monitor five different patient positions (standing/sitting, supine,
prone, left and right.)

You Will Need:
⁻ A micro:bit
⁻ 2xAAA battery holder and batteries
⁻ micro-USB cable
⁻ Computer with Internet connection, WiFi

connected
⁻ Smartphone or tablet running Android

OS, Connected to the same WiFi network
⁻ Piece of thick cardboard
⁻ Pair of scissors and a paper cutter
⁻ Double sided tape
⁻ Belt (clothing) or flexible band or strap

You will be using Bluetooth UART service to send

data from micro:bit to the Android app.

The body position (posture) sensor uses the

triple axis accelerometer of the micro:bit to

obtain the patient’s body position. The sensor

sends real-time body position data to an Android

app through Bluetooth.

Here is the list of micro:bit accelerometer

gestures can be used for each body gesture.

Pradeeka Seneviratne
 Pradeeka is a technological

Writer,avid maker, and loves
to design wearable tech
project, just like this body
position sensor.

@pradeeka7

:make

Image Credits: "Designed by yanalya / Freepik"
Body position sensors provide a signal that indicates to the system the patient's sleeping posture.

Body Position Accelerometer Gesture

Standing/Sitting logo up

Supine screen up

Prone screen down

Left tilt left

Right tilt right

75

https://twitter.com/pradeeka7

‘bluetooth’ button to remove the existing

‘Radio’ package and add the new

‘bluetooth’ package.

3. You have now installed the Bluetooth

package and are ready to use bluetooth

UART service for the micro:bit.

4. Add an event to indicate when the

micro:bit is connected to over Bluetooth. In

the toolbox click ‘Bluetooth’ followed by ‘on

bluetooth connected’. Then, in the toolbox

click ‘Basic’ followed by ‘show icon’ block.

Drag the ‘show icon’ block into the ‘on

bluetooth connected’ block. In the ‘show

icon’ block, click on the drop-down list and

choose ‘YES’ icon.

5. Add another event to indicate when the

Bluetooth connection to the micro:bit is

lost. In the toolbox click ‘Bluetooth’

followed ‘on bluetooth disconnected’. Then,

in the toolbox click ‘Basic’ followed by

‘show icon’ block. Drag the ‘show icon’

block into the ‘on bluetooth disconnected’

block. In the ‘show icon’ block, click on the

drop-down list and choose ‘NO’ icon.

6. In the toolbox, click ‘Bluetooth’ followed by

‘…More’. Then click ‘bluetooth uart service’

block. The block will add onto the coding

environment. Now, drag the ‘bluetooth

uart service block’ into the ‘on start’ block.

7. In the toolbox, click ‘Input’. Then click ‘on

gesture’ block (‘on shake’ is the default

Assembling Hardware
Let’s build a prototype version of the wearable.

Using a piece of double-sided tape, stick the

micro:bit on the cardboard. Then take another

piece of double sided tape and stick the 2XAAA

battery holder next to the micro:bit. Plug the

battery connector and insert 2XAAA batteries.

Insert the belt through the carboard holder as

shown in the following figure.

Assembled body position sensor.

Building the Code for micro:bit

First, build a program for micro:bit to detect

different body positions using MakeCode for

micro:bit

(https://makecode.microbit.org/).

When micro:bit detect a new gesture, the name

of the gesture will send to the app using the

Bluetooth UART service.

1. First, you should install ‘Bluetooth’

package for micro:bit. In the toolbox, click

‘add package’. Then, in the ‘Add Package’

dialog box, click ‘bluetooth’.

2. Click, ‘Remove package(s) and add

:make Body Position Sensor
76

https://makecode.microbit.org/

:make
43

selection) to add it onto the coding

environment. Click on the drop-down list

of the ‘on gesture’ block and select ‘logo

up’. This gesture is corresponded to the

body position ‘standing/sitting’. In the

toolbox, click ‘Bluetooth’ followed by

‘…More’. Then click ‘bluetooth uart write

string’ block. The block will add onto the

coding environment. Now drag the

‘bluetooth uart write string’ block into the

‘on logo up’ block. In the text box, type in

the text ‘logo up’.

8. Now duplicate the ‘on logo up’ event four

(4) times. Modify them for the gestures

‘screen up’, ‘screen down’, ‘tilt left’, and

‘lilt right’. Type in the text boxes for uart

write, ‘screen up’, ‘screen down’, ‘tilt left’,

and ‘tilt right’ respectively.

9. Following figure shows the complete code

built with the MakeCode for micro:bit.

The micro:bit Express:make
43

:make
43

:make
43

Formula One in Schools:makeBody Position Sensor

Code for micro:bit.

10. Download the hex file and flash it on to the

micro:bit.

Building the App with MIT App
Inventor
The MIT App Inventor can be used to quickly

develop Android apps for micro:bit. The steps

below will guide you how to develop a simple app

to communicate over Bluetooth with micro:bit.

1. Go to MIT App Inventor

(http://ai2.appinventor.mit.edu/)

and sign in with your Google account.

2. Start a new project and type in

‘body_posture_monitor’ in the ‘Project

name’ box.

3. Drag a ‘HorizontalArrangment’ form the

‘Layout’.

MakeCode Blocks:

77

4. Then add four buttons from the ‘User

Interface’. Rename them as ‘ButtonScan’,

‘ButtonStopScan’, ‘ButtonConnect’, and

‘ButtonDisconnect’.

5. Change their text to ‘Scan’, ‘Stop Scan’,

‘Connect’, and ‘Disconnect’.

6. Below the ‘HorizontalArrangement’ add a

Label from the ‘User Interface’. Rename it

as ‘LabelStatus’ and change its text to

‘Status’.

7. Add another Label below to the ‘Status’

and rename it as ‘LabelData’. Change its

text as ‘Posture’.

8. Drag a ‘ListView’ from the ‘User Interface’

and place it below the ‘LabelStatus’.

Rename it as ‘ListBLE’.

9. The following figure shows the completed

UI.

10. Download the BluetoothLE extension from

http://iot.appinventor.mit.edu/assets/ed

u.mit.appinventor.ble.aix.

11. In the ‘Palette’, click on ‘Extension’ at the

bottom and then on ‘Import extension’ and

then ‘Choose File’. Browse the downloaded

extension on your computer and ‘Import’

it.

12. Drag the ‘BluetoothLE’ extension onto the

viewer.

13. Click ‘Import extension’ again, paste in the

URL

‘http://iot.appinventor.mit.edu/assets/c

om.bbc.microbit.profile.aix’ and click the

‘Import’ button.

14. Drag the Microbit_Uart extension onto the

viewer.

15. The following figure shows the viewer with

above two extensions.

Completed UI for the app.
Adding extensions.

:make Body Position Sensor
78

:make
43

The micro:bit Express:make
43

:make
43

:make
43

Formula One in Schools:makeBody Position Sensor

17. In the ‘Components’ click ‘Microbit_Uart1’

and from the ‘Properties’ choose

‘BluetoothLE1’ as shown in the following

figure. Then click OK.

16. In the ‘Components’, click ‘Screen1’ and

type in ‘Body Posture Monitor’ in the

‘AppName’ text box as shown in the

following figure.

Editing the app name

Configure UART with Bluetooth.

18. Click on the ‘Blocks’ to switch to build the

program with blocks.

19. Build the program for Android app as

shown in the following figure.

Code for Android app.

79

11. The status will change to ‘Connected’. Also,

a ‘tick/YES’ will display on the micro:bit

display.

12. Once connected, change your body to

different positions. The app will display the

real-time position of your body on the

Android app.

When you’ve finished your code, make sure

that you have not missed a block as this may

cause your code not to work properly and throw

errors. It’s good practise to go back and check

your code before you continue.

Wear It
Wear the body position sensor using the belt

just above the waistline.

Use It
1. First, you will need to pair your Android

smartphone or tablet to the micro:bit.

2. Install ‘MIT AI2 Companion’ app on your

Android device from the Google Play.

3. In the MIT app inventor, click Connect | AI

Companion. You will get a pairing code

something like this: ‘biuosv’

4. Then open the ‘MIT AI2 Companion’ app.

5. Type in the pairing code (six-character

code) in the text box. Then tap ‘connect

with code’ button.

6. A runtime version of your app will start

on the smartphone.

7. Tap ‘Scan’ button to scan all the available

micro:bit boards.

8. Once found, tap the ‘Stop Scan’ button.

9. Then, tap on the name of your micro:bit.

10. Finally, tap the ‘Connect’ button

Taking the project further
You can save body position data to Google
Fusion tables for further analyze.

:make Body Position Sensor
80

Advertise in
micro:mag!

Get in touch!
micromag.cc/contribute
hello@micromag.cc
@micro_mag

Get in touch for more
info - email us on

hello@micromag.cc

micro:mag is the community
magazine for micro:bit lovers - if you

want to reach an audience of students, teachers and hobbyists at
reasonable cost, micro:mag is the

place to do it! We’ve got full and half
pages available, at reasonable rates,

and you’ll help cover the costs of producing the magazine.

mailto:hello@micromag.cc

Countdown Timer
Make your very own
micro:bit countdown
timer in 9 simple steps

Timers are handy, they can time a boiled egg to

perfection, help us take group photos, and be

used to help rockets to launch. We shall make

our own timer using a micro:bit, some crocodile

clips and a speaker / headphones. You will need

to connect the headphones to the micro:bit as

per the image below..

From the Input menu drag the “on button A

pressed” block into the coding area. Any code

inside the block will be run when button A is

pressed.

Les Pounder
Les is a maker and trainer
who has worked with the
Raspberry Pi Foundation
and the BBC to deliver
computing training.

@biglesp bigl.es

micro:hit

Follow this
wiring guide to
connect your
speaker.

Step 1: Working with input

Step 2: Create a variable

In the Variables menu click on “Make a Variable”

and call it “time” We shall use this variable to

store the duration of our countdown.

Step 3: Using the variable

From the Variables menu drag “set item to 0”

block to the coding area. Click on the arrow next

to “item” and change to “time” then change 0 to

10.

Step 4: Creating a loop and a
test

We use a while true loop from loop and from

Countdown Timer
82

logic we connect a _ > _ block. Then from

Variables we drag time and place it in the left

space and type 3 in the right space.

Step 5: Showing and hearing the
countdown

From the Basic menu, we use Show Number and

use our time variable as the number. Then from

Music, we use Play Tone and choose middle C to

indicate a countdown is running.

Step 6: Countdown and pause

Each time the countdown runs, it needs to pause

for 1 second (pause (ms) from Basic) and then

change the value of our time variable by -1.

Step 7: Final 3!

higher note, to indicate that there is not much

time left.

Step 8: End on a high note!

With the countdown reaching 0 we trigger a

loop that will repeat 4 times. Each time it goes

around, it will play a high G note really quickly.

Just like an alarm clock!

Step 9: Putting it together

Here is all of the code for this project. We have

learnt how to use loops, conditional tests, input,

and make music with the micro:bit!

That’s it, now download the code to your

micro:bit and when it has finished, press the A

button to start the countdown!

Well done you have made your own countdown

timer! Can you change the timer to time a boiled

egg?

micro:hitCountdown Timer

Once the countdown reaches 3, we use another

loop, and for 3 loops we change the tone to a

83

Meet the foundation:
Global Engagement
Team

Have you ever wondered how the micro:bit gets into the hands of so many young people in so

many countries? Meet the Global Engagement Team! They keep themselves busy talking to

governments and ministries of education around the world to encourage the use of micro:bit in

schools and to make sure that all their education materials are as accessible as possible. They

also attend as many trade and education events as they can, talking to their ecosystem and

helping accessory makers and resellers to get the information they need to get their products

onto the market. Ready to meet them? Come and say hello...

:foundation Global Engagement Team

Hal - Chief of Global Engagement

Hal heads up their global engagement team and is in charge of all

things micro:bit in North America. He has a long history in the hi-tech

industry and sees digital skills – particularly computational thinking

and coding – as the key to socioeconomic mobility. He believes the

micro:bit to be, “a magical device that enables children to connect the

virtual world of software with the physical world of making”. His

ambition is to give every child, the world over, the opportunity to

express their digital creativity with a micro:bit. Go, Hal!

Meet the mighty team of 4 people that are
responsible for making the micro:bit available
across the world..

84

:foundationGlobal Engagement Team

Rachel - Head of Product and

Channels
Rachel looks after the Foundations relationship with Premier Farnell

– the people who make and distribute all those lovely micro:bits. (In

fact, she used to oversee UK distribution for Raspberry Pi and the

micro:bit, too!) Based in the UK, Rachel also looks after resellers,

accessory makers and curriculum providers, as well as leading on

activities across Europe. Phew! She’s been in the electronics industry

for many years, and absolutely loves helping children learn new skills

with the micro:bit.

Jose - Head of Latin America

(Brazil)
Jose is responsible for micro:bit activities in Latin America. Based

in Brazil, he’s a veteran of the hi-tech world and has been involved

with key education initiatives in the region for quite some time. He

sees technology as, “a powerful tool to promote social inclusion for

children and underprivileged adults” and has been involved in

fantastic international projects such as One Laptop Per Child and

the Brazilian Ministry of Education’s drive to distribute tablets to

state school teachers.

Waris - Head of Asia
Waris oversees micro:bit development activities in the Asia Pacific region.

Based in Hong Kong, he works tirelessly with educators, schools and

universities to build a sustainable micro:bit ecosystem … and partners with

local policymakers, accessories makers, developers, and resellers to create

even more micro:bit magic! Even at weekends, Waris can be found at Hour

of Code events and introducing the micro:bit to students around Asia.

85

Product
Reviews

Get in touch!
micromag.cc/contribute
hello@micromag.cc
@micro_mag

Get in touch for more
info - email us on

hello@micromag.cc

If you make cool products for the
micro:bit, then micro:mag is the place to get it reviewed! With

thousands of community readers per
issue, it’s also a great place to get your product/addon noticed.

mailto:hello@micromag.cc

Feedback

Get in touch!
micromag.cc/contact
hello@micromag.cc
@micro_mag

We’d love to get your feedback on this
issue of micro:mag. It helps us improve

the magazine. If you have anything
you’d like to share with us, please do get
in touch with us, we really appreciate it

http://micromag.cc/contribute
mailto:hello@micromag.cc
https://twitter.com/micro_mag

4tronix
cube:bit
Build a micro;bit3D LED
cube with cube:bit/

You may have seen the

amazing cubert project

built by Lorraine Underwood. This dazzling

project which is a micro:bit powered 8x8x8 was

the main inspiration for maker company

4tronix’s latest product, cube:bit.

This dazzling micro:bit addon consists of 3

different versions, a 3x3x3, 4x4x4 and a 5x5x5

cube. The cube itself can be used with crocodile

clips connected to the micro:bit or for £10 extra,

you can purchase the base board where there is

an edge connector for micro:bit and other

connections.

The cube is a little fiddly to build but it’s just a

case of following the handy instructions at

go.micromag.cc/cubeguide and using some metal

standoffs to put all

the ‘slices’ together. You don’t have to have any

experience at all to build it.

Once you have built your cube, you locate the

micro:bit edge connector port on the base and

slot in your micro:bit to connect it all up.

Due to the high power of the LEDs on cube:bit,

extra power is needed if you are to use the cube

to its full potential. You can provide extra power

through many different ports on the base, for

example, we used a 5V micro USB phone charger

to power our cube and this seemed to work ok.

It’s easy to switch between the different power

inputs using a jumper on a power select header

on the base, this makes it easy for beginners as

it’s not a complicated task to do.

9/10

:review

BBC micro:bit slotted into the cube:bit base.

4tronix cube:bit
88

http://go.micromag.cc/cubeguide

Buy the 4tronix cube:bit:
go.micromag.cc/cubebuy
Remember to get the base
for micro:bit support!

Gareth from 4tronix has created a lovely easy to

use MakeCode package which you can install

into the micro:bit MakeCode editor. This enables

you to have full control over your cube but in a

way that is easy and user friendly. Also on the

website is a few code examples that you can copy

into MakeCode, however, we found that there is a

lack of in depth tutorials for this product which

lets it down slightly by not providing user guides

for beginners.

You can also control your cube:bit using

MicroPython by treating it as a string of

neopixels, although, it’s more complex to create

animations with MicroPython as there is no

library for the cube:bit.

Cube:bit is also cheap to buy, with the basic

3x3x3 model priced at £22, the cubes also come

in a premium style packaging which is a nice

touch.

The cubes are based off WS2811 or Neopixels as

you may know them and they are placed on both

sides of the slice. The handy labels on the slices

themselves make it easy to reference the pixels

when coding them, as well as the A + B side

labels when your building them. The metal

standoffs make the connections between the

slices, and this is a really effective way to

connect the cube together.

Overall, we think this cube:bit is a shiny addon

for the micro:bit which is really well designed

and easy to use in MakeCode. However the lack

of detailed guides for beginners and no python

library sets this back from getting a 10.

:review4tronix cube:bit

The cube:bit has LEDs on the top and bottom giving it a nice effect.

89

http://go.micromag.cc/cubebuy

DFRobot Micro:bit Driver
Expansion Board review

DFRobot has just released the expansion board

DFR0548 for micro:bit with 9 inputs / outputs, 2

I2C ports, 8 outputs for 8 servo motors and 8

outputs for 4 motors (or 2 stepper motors).

Inputs / outputs

This DFR0548 board has significantly more

inputs/outputs than the competition.

Unfortunately, it has only 3 analog inputs

because the 6 pins used by the LED matrix are not

accessible. This simplifies its use and allows to

have a fairly compact board but it's still a shame

:review Daniel Pers
Daniel Pers is a STEM teacher
(K8 to K12) in the Lycée Pilote
Innovant International
(Poitiers, France).

daniel.pers@ac-poitiers.fr

An original solution, versatile, powerful, but
low-cost for projects with motors

not to use them, especially since the LED matrix

can easily be disabled by the program.

The two I2C ports of this board don’t allow to

directly connect (without cable) an OLED display

because they are male connectors, with a

different order of the pins, ... Elekfreaks does

better for example with its EF03405 board.

The originality of this DFR0548 board comes

mainly from the fact that all the motors are

controlled by I2C via a circuit PCA9685 which

brings 16 additional outputs.

9/10

90

The servo motors are powered directly from Vin.

The motors are powered by 2 high-performance

DRV8833 H bridges with a rated current of 1.5A.

This allows the use of small standard geared

motors, but I regret that DFRobot has chosen to

use the same Vin power supply voltage while the

DRV8833 support a voltage of 2.7V to 10.8V,

especially since it has put two connectors for the

power supply.

The ideal would have been a 3.5V to 10.8V power

supply (practically compatible with a Li-ion 1S or

2S battery) + 5V USB power supply or 5V

regulator for servo motors (with a jumper to

choose).

Red and green LEDs indicate polarity for each

motor. They seem useless. I would prefer an

analog current sensor.

Conclusion

This expansion board is for me the best solution

available today. In addition, it is one of the

cheapest. Where can I buy one?

https://www.dfrobot.com/product-1738.html

(and at gotronic.fr in France).

The library provided for MakeCode

Motor control is simple thanks to the package

developed by DFRobot

go.micromag.cc/DFRobotDocs.

Some improvements must, however, be made:

● The control pulses of the servo motors

have a width twice too large (1.2ms to

4.8ms instead of 0.6ms to 2.4ms).

● The PWM signal for controlling the speed

of the motors has a frequency of only 50

Hz, which is much too low (impossible to

filter the signal of a current sensor for

example).

● The speed of the stepper motors can’t be

controlled.

Supply and power interfaces

The board is supplied by a voltage Vin between

3.5V and 5.5V from a wiring terminal or a DC 2.1

plug. DFRobot had a good idea to provide with

this board a cable to connect the power supply to

a USB port (a charger for example). The presence

of an On / Off switch is useful.

The micro:bit board is supplied by 3.3V from this

voltage Vin, but also from its micro USB port

used to download a program.

:reviewDFRobot Expansion Board
91

https://go.micromag.cc/DFRobotDocs

Dexter
GiggleBot
Making & Programming
robots just got easier!

Here at micro:mag we

love micro:bit robots.

These come in all shapes,

sizes and prices but this new offering from

Dexter industries makes it very accessible for

kids. Let’s take a look at what it has to offer.

Hardware
● 2 x DC Motors

● 9 x WS2812 Neopixels

● A pen Holder (Yes you can code GiggleBot

to draw!) this is located between the

wheels.

● 2 x line following sensors can be used to

follow a thick black line on the floor

● 2 x light sensors one located on each side

of the robot, you can code the light sensors

to follow a torch.

● 2 x servo mounts

● 1 x AA battery holder for 3xAA

● 2 x connectors for I2C addons

● ATMega328PB microcontroller (the brains

of the robot)

● DRV8837C 1A H Bridge motor controller

(controls the motors and makes your robot

move)

● A broken out micro:bit edge connector.

Build
GiggleBot is probably the easiest robot to build as

it comes almost completely assembled all we

needed to do was push the wheels on to the

motors and insert some batteries. Then it was

ready to insert our micro:bit and get coding!

Programming
GiggleBot can be programmed using

MicroPython using the Mu editor, EduBlocks and

MakeCode, this is because it is powered by a

micro:bit.

When test driving GiggleBot we used the

MakeCode editor. To get started you have to

install the giggle extension to do this go to

Advanced -> Extensions and in the search box

10/10

:review Dexter Industries GiggleBot
92

https://codewith.mu/
https://microbit.edublocks.org/
https://makecode.microbit.org/

type giggle and press Enter.

With GiggleBot aimed at children, we are happy

to report that it is very easy to program. Within a

few minutes of looking at the code blocks, we

were able to figure out how to make our robot

move. We tried out our GiggleBot at a local code

club, the kids really enjoyed using the robot and

were instantly getting it to move, light up and

sense.

Another thing we are really impressed with is

the fact the robot is compatible with nearly all of

the “major” micro:bit editors, allowing people of

all abilities to use the GiggleBot making it the

perfect robot for beginners and experts alike.

:reviewDexter Industries GiggleBot

Not only is the Gigglebot an incredibly good robot to use, it also looks amazing with it’s plethora of lights and lime green PCB chassis.

93

The MakeCode extension developed my Dexter is

simple to use and has lots of blocks that let you

control the robot with ease and For those who

want to get a bit more advanced too, the

EduBlocks and Python libraries are great for

them, allowing you to use the GiggleBot with

standard python features.

Conclusion
GiggleBot is priced at $60 USD which is about

£45 GBP which for what the robot offers, we

think is a very fair price. Also, if your in the US,

Dexter offer free trials for schools in which you

can loan some GiggleBots for 45 days. Overall

this is an excellent beginners robot and is one of

the easiest to use we’ve seen for the micro:bit.

Buy a GiggleBot:
go.micromag.cc/buygiggle

http://go.micromag.cc/buygiggle

Kitronik
:GAME ZIP 64
Break out your micro:bit into a
portable games controller

Ever tried to make your

own games for the

micro:bit but been limited by the two buttons?

Well, the Game Zip 64 solves this problem by

breaking out the micro:bit pins into 6 buttons, a

speaker, a vibration motor and an 8x8 NeoPixel

display. The Game Zip 64 also has room for 3 AA

batteries on the back, which powers the Game Zip

64 and the micro:bit.

Programming

The Game Zip can be programmed with

MakeCode and the beta version of MicroPython at

the minute.

To get the Game Zip custom blocks in make code,

go to Advanced -> Add Package then type in Game

Zip and click on the Game Zip package that shows

up, see image below.

If you have a bit of experience with the micro:bit

and the coding editors you can start creating

games quite quickly. You are limited to the types

of games you can make on the 8x8 NeoPixel

matrix, but it is still a great way to start

programming and being able to take your games

with you.

Kitronik has some really nice lesson plans to

follow along with too. This is what we used to try

out the programming of the Game Zip.

9/10

:review Kitronik :Game Zip 64
94

Conclusion

The Game Zip is a simple yet effective way to get

children into programming by creating simple

games like Snake and Pong. Kitronik has these as

demos that can be downloaded from their

website at kitronik. They were rather fun to play!

:reviewKitronik :Game Zip 64

The cube:bit has LEDs on the top and bottom giving it a nice effect.

95

Buy the Kitronik :Game Zip 64
go.micromag.cc/buygamezip

https://www.kitronik.co.uk/5626-game-zip-64-for-the-bbc-microbit.html
https://go.micromag.cc/buygamezip

micromag.cc

