
IISSSSUUEE 0033 JJUULL 22001122

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

QR Code:

http://www.themagpi.com
Raspberry Pi is a trademark of The Raspberry Pi Foundation.

Front Cover and Feedback images were created using Photofunia

FFii rreedd uupp aanndd
rreeaaddyy ttoo ggoo

115500++
GGAAMMEESS•• DDeebbiiaann EEsssseennttiiaallss

•• TThhee CC CCaavvee
•• SSccrraattcchh PPaattcchh
•• PPrrooggrraammmmiinnggFFuunnddaammeennttaallss

TTOO TTRRYY
OONN YYOOUURR PPII

Welcome to Issue 3 of The MagPi, a community lead magazine keeping you up to date
with all things Raspberry Pi.

This month has seen the team working hard searching and testing 9000 stable Debian
packages, and identifying over 150 games and 43 apps to try out on your Pi.

Meltwater introduces his article ‘Meeting Pi’, offering ideas and tips on introducing the
Raspberry Pi to users of very young ages. We feature an article on low level programming
using C and Alex Kerr has produced his article ‘Programming fundamentals’ describing
how to use variables, ‘If’ statements and loops.

Bodge N Hackitt continues his series, explaining how to program the USB robotic arm
using python. Darren teaches us more on interfacing with the Pi, plus more from the
reader’s favourites - Command line, Scratch Patch and the Python Pit.

An email that caught my eye this month
was from Cayton-John, aged 7, reading up
on the first edition of the MagPi.

Could this be our youngest reader?

If you have photos reading our magazine,
please send them to editor@themagpi.com .

On behalf of The MagPi team we want to thank Will Bengtson and his team at QRt for
giving us our beautiful personal The MagPi QR code. Please check out their site at
http://QRt.co and see their clever generator and other attractive work.

Finally, keep your questions for Liz and Eben coming in and look for our official interview
in next months magazine.

We hope you continue to enjoy reading the MagPi and that it
inspires you to get programming.

Ash Stone

Chief Editor of The MagPi

2

Debian Essentials
Interfacing (In Control) Part 2

Command Line Clinic
Skutter Part 2

Protect Your GPIO Connector
Meeting Pi

The C Cave
The Scratch Patch

The Python Pit
Programming Fundamentals

Feedback
Weblinks & Credits

P.04
P.07
P.10
P.14
P.16
P.20

P.22
P.24
P.26
P.29
P.30
P.32

If you are tired of logging in to your Debian SD card with username: pi, password: raspberry and then typingstartx, you can get your Raspberry to boot straight to the graphical interface without having to typeanything...
After logging in type:

sudo nano /etc/inittab

Scrol l down to the l ine:

1 :2345:respawn:/sbin/getty 11 5200 tty1

Change it to:

#1 :2345:respawn:/sbin/getty 11 5200 tty1

(Put a # at the beginning to comment it out)

Add a line under it:

1 :2345:respawn:/bin/login -f pi tty1 </dev/tty1 >/dev/tty1 2>&1

Press CTRL+X and Y to save changes

Then type:

sudo nano ~/.bash_profi le

Type in:

startx

Press CTRL+X and Y to save changes

Then

sudo reboot

Your Pi should now boot up to LXDE automatical ly. I 'm sure that wil l make many of you happy!

Make sure to fol low those instructions careful ly, and be aware of the lack of security - The contents of your Pi are

now open to anyone that has access to it. More useful Debian tips overpage.

Article by JasemanContents

GGEETTTTIINNGG YYOOUURR RRAASSPPBBEERRRRYY PPIITTOO AAUUTTOOBBOOOOTT TTOO LLXXDDEE

EESSSSEENNTTIIAALLSS FFOORR YYOOUURR RRAASSPPBBEERRRRYY PPII
These procedures were tested with thedebian619042012.img from:http://raspberrypi.org/downloads

(You will need to have your Pi connected to the internet.)
REMOVING THE BLACK BORDER FROM AROUNDTHE SCREEN
This step is only required if you are finding a black borderaround the edge of your screen or the image overlaps thescreen.
After booting up debian, login withusername: pipassword: raspberry
At the pi@raspberrypi:~$ prompt, type in:sudo nano /boot/config.txt
Type the following into the nano text editor:overscan_left=10overscan_right=10overscan_top=10overscan_bottom=10
Press Ctrl+X to Exit and Y to say Yes to saving thechanges.
When you are back at the command prompt type:sudo reboot
Wait for the pi to reboot and see if the borders have gone.
Repeat the process above changing the numbers by minus10 each time, until the border is gone. I found that myHDMI monitor required 40 for all settings, but my TVworked best with zero for left and right, and 20 for both topand bottom. You will need to find the best settings to suityour particular screen.If the picture goes off the edge of the screen. Just usepositive numbers for the overscan values.
IF AFTER REBOOTING YOU ARE GETTING NOPICTURE:
You can reset the settings back to default by typing blindly:piraspberrysudo rm /boot/config.txt Rsudo reboot
This will remove the config.txt file completely. After thereboot your picture should return. Try setting youroverscan again with slightly lower numbers until you findthe best values.
Or alternatively, if you have a Windows PC and a cardreader you can access the config.txt file and edit it withWindows notepad.

You should also check the settings of your TV or monitor(4:3/16:9 aspect ratio, image adjust, pan and zoomsettings).
INSTALLING THE SOUND DRIVER MODULE
If you intend to have sound through the TV, make sure theTV volume is up, otherwise connect a 3.5mm headphonecable from the pi's analogue output to your speakers/stereoequipment and switch them on.
After logging in type the following at the command prompt:sudo aptget updatesudo aptget install alsautils (Answer 'Y' if asked aboutdisk space used)sudo modprobe snd_bcm2835
If you want sound through the HDMI cable type:sudo amixer cset numid=3 2
Or if you want sound through the analogue (headphone)socket type:sudo amixer cset numid=3 1
To make sure the sound driver module gets loaded eachtime you boot up type:sudo nano /etc/modules
At the bottom of the file (Under vchiq), add the following:snd_bcm2835
Press Ctrl+X and then Y to save the changes.
Reboot the pi:sudo reboot
Login and start the LXDE Graphical Interface by typing:startx
When LXDE has loaded, Select 'Music Player' from theSound & Video menuPress the play button. If all is well you should hear a 40second piece of music called 'Cellule' by Silence.
You can use file manager to copy mp3 music from a USBmemory stick onto your home folder or play them directlythrough Music Player. Note however that it won't play wmafiles.
FIXING GEANY (Python Editor)
When trying to execute python scripts from Geany you willget an error.
To resolve this, go to Edit>Preferences>Tools.
Change the 'Terminal:' setting from 'xterm' to'/usr/bin/lxterminal'.
Click Apply and OK.
INSTALLING OMXPLAYER (Command Line MoviePlayer)
The OMXPlayer will allow you to play avi and mp4 movieson your Raspberry Pi.
At the command prompt type:wget http://seyrsnys.myzen.co.uk/rpi/omxplayer_0.0.1

4

arm.debsudo dpkg i omxplayer_0.0.1arm.debsudo aptget f install
Use file manager to copy some movie files from a USBdevice into your home folder then from the commandprompt type:omxplayer filename
Whilst playing press 'p' to pause 'q' to quit. Arrows to jumpforward/back.
INSTALLING CHROMIUM WEB BROWSER
Chromium is slow on the Pi, but it works well with thefollowing useful websites:http://qwebirc.swiftirc.net instant messenger chat roomshttp://www.dropbox.com upload/download/share/transferhttp://www.gmail.com in Basic HTML mode send/receivegoogle email with attachments
sudo aptget install chromiumbrowser
INSTALLING XPDF
XPDF is a free PDF document viewer.
Download The MagPi pdf's by opening Midori web browser,and visiting http://www.themagpi.com. Click on one of thePDF download mirrors. Choose 'Save' and watch theprogress of the download at the bottom right of thebrowser.
At the command line, type:ls (check that The MagPi Issue X Final.pdf is listed)sudo aptget install xpdf (Type Y if asked about disk space)xpdf "The Magpi Issue 1 Final.pdf" (Wait a moment and thepdf document should be displayed)
OTHER APPS AND GAMES
NOTE: Some of these get listed under 'other' on theLXDE menu.
To install use: sudo aptget install <name>To uninstall: sudo aptget remove <name>To clean up: sudo aptget autoremove
abiword Word Processoramsn MSN Messenger (Slow to open/close but works)audacity Audio Editor / Playeravifileplayer Useless for video but plays WMA+MP3 musicbrandy BBC BASIC V Programming (Type 'brandy')bwbasic Bywater BASIC Programming (Type 'bwbasic')espeak Command Line Text2Speech Synthevolution Email Calendar Contacts Memos Tasksextcalc Powerful Scientific Calculatorfeh Command Line Image Viewer (With many options)filezilla FTP file sharing clientfotoxx Photo Editorfraqtive Mandelbrot Designergalculator Calculatorgimp GNU Image Manipulation Programgnumeric Spreadsheetsgpaint MS Paintlike drawinggrafx2 256Color Paint Programgrisbi Personal Finance Management Programhomebank Manage Personal Accounts At Homelifeograph Private digital diarymatchboxOnscreenKeyboard

mc Midnight Commander terminal file manager (Type'mc')milkytracker Music creation tool inspired by Fast Tracker 2mtpaint Powerful Graphic Editoropenoffice.org Office Productivity Suiteoxine Media Center for MPEG, MP3 and WMAqrencode QR Code encoder>PNG image (Type qrencode<string> o filename)schism ImpulseTracker Clonescribus Desktop Publishing (Used to produce The MagPi)ghostscript PostScript/PDF interpreter (Use with Scribus)tuxpaint A Paint Program For Young Childrenxball Simulate bouncing balls in a window (Click and dragin the window)xchat IRC Chat Clientxcircuit Electrical Diagram Packagexineui Media Player for MPEG, MP3 and WMAxpad Sticky Note Applicationxpaint Simple Paint Programxtrkcad Model Train Track CAD Programyakuake A terminal window drops down from the top of thescreen when you press F12.
3dchess Game (3x2d boards)abe Abe's Amazing Adventure Gameaceofpenguins Freecell, Solitaire+ Minesweeper, Teipei...airstrike 2D Airplane Dogfighting Gameatom4 Color Puzzle Gameatris Tetris gamebalazar32d Cool 3D Gamebeneathasteelsky Scifi Adventure Game (Nice Intro!)blobwars Metal Blob Solid Amazing 2D Platform Gameblockade Puzzle Game command line 'sudo blockade'bumprace 2D Space Maze Gamebygfoot Football Manager Gameceferino Don Ceferino Hazaa Platform Gamechildsplay Interactive Childrens Games Collectioncrimson Crimson Fields Tactical Gamedangen Strange Shoot 'Em Up Gamedodgindiamond2 Arcade Shoot 'Em Up (Press M for Fire)dossizola Isola Board Gameempire TextOnly Empire Building Gameenigma Puzzle Gameetw Eat The Whistle Football Arcade Gamefilletsng Fish Fillets Puzzle Gameflobopuyo Connect4 meets Tetrisfreealchemist Block Gamefreedink RPG (Use GNU Free Dink from Other)freedroid Paranoid Game Clonefrozenbubble Frozen Bubble 2 Gamegeki2 Xenonlike vertical shoot'em up (Fantastic!)geki3 RTypelike horizontal shoot'em up (Amazing)ghextris A Tetrissudolike Game On A Hexagonal Gridglotski Slide Blocks To Reach A Goalglpeces Tangram Puzzle Game Clonegmchess Chinese Chess Game (Xiangqi)gnugo The Game Of 'Go'gnujump Plaftorm Gamegnuminishogi Mini Shogi 5x5 Board (Type 'help')golly Game of Life Simulatorgravitywars Gravity Force Clonegrhino Othello/Reversi Board Gamegroundhog Simple Logic Gamegtans Tangram Puzzle Gamegtkatlantic Game Like Monopolygtkballs Logic Gamegtkboard Many Board Games In One Program

Continued over page...
5

gtkpool Pool Billiard Gamehexahop Hexagonal Tile Puzzle Gamehexalate Color Matching Puzzlehexxagon Hexagonal Ataxx Cloneholotzcastle Mystery Platform Gamehrd HuaRongDao Puzzle Gamejester Board Game Similar To Othellokball Game Of Skill And Reflexesketm 2D Scrolling Shooterkomi Komi The Space Frog Arcade Gamelate A Bit Like Bally IIlbreakout2 A Fast Ballandpaddle Gameliquidwar Multiplayer Wargamelmarbles Build Figures Out Of Colored Marbleslmemory A Children's "Memory" Card Gameluola Multiplayer CaveFlying Gamemadbomber A Kaboom! Clonemagicmaze Rescue Maiden / Avoid Monstersmagicor Puzzle Game (Slow)mazeofgalious The Maze of Galious (Slow)meritous Actionadventure Dungeon Crawl Gamemicropolis Realtime City Management Simulatormokomaze Ballinlabyrithgame for the FreeRunnermoonlander Gamemousetrap A Simple Game Of Ball Chasingnetmaze 3D Multiplayer Combat Gamenikwi Platform Game (Good, But Slow Between Levels)njam Pacmanlike Game With Multiplayer Supportoneisenough 2D Platform Game Epic Struggle Of Ballsopeninvaders Space Invaders (Crashes Randomly)openyahtzee Classic Dice Game Of Yahtzeeovergod Bidirectional Scrolling Arcade Gamepachi Platform Game Featuring Pachi el Marcianopacman Chase Monsters In A Labyrinthpalapeli Jigsaw Puzzle Game (Slow To Load)pangzero Pop Balloons With A Harpoonpathogen Pathogen Warrior Match 3D Model Structurespathological Puzzle Game Involving Paths And Marblespegsolitaire An Education Game Similar To HiQpenguincommand A Missile Command Clonepente Five In A Row Gamepetris Peter's Tetris A Tetris(TM) Clonepingus Free Lemmings(TM) Clonepokerth Texas Hold'em Gamepowermanga Vertical Shoot 'em Up With 3D GFXquarry Board games Go, Amazons, and Reversirafkill vertical shoot'emuprili a toy train simulation gamesgtpuzzles Simon Tatham's Puzzle Collectionsimutrans transportation simulatorslimevolley Unrealistic 2D Volleyball Simulationsnake4 Snake Gamesolarwolf Collect The Boxes And Don't Become Madsopwith Port Of The 1980's Sidescrolling WWI Dogfightingspacearyarya 3rd Person Shooter In Pseudo3Dspout Tiny Abstract Black And White 2D Caveshooterstarvoyager 2D 'Star Trek' themd arcade gamestax Collection Of Puzzle Games Similar To Tetris Attackstroq A Polarium/Chokkan Hitofude Clonesupertux Classic 2D Jump 'n Run Sidescroller With Tuxtecnoballz Breaking Block Game Ported From The Amigateg Turn Bbased Strategy Gametenmado Shoot 'em Up Game Blue or Red Worldtennix 2D Tennis Gametictactoe tictactoe Game Written In Rubytmw The Mana World Is A 2D MMORPGtome Singleplayer, Textbased, Dungeon Simulation Gametoppler "Nebulus" 8/16bit Clonetumikifighters 2D Shooter (Very slow)tuxpuck "Shufflepuck Cafe" Clone

tuxtype Educational Typing Game For Childrentworld Chip's Challenge Game Engine Emulationtypespeed Zap Words Flying Across The Screen By Typingviruskiller Game About Viruses Invading Your Computervodovod Lead The Water To The Storage Tankwhichwayisup 2D Platform Game With A Rotational Twistwing Galagalike Arcade Game (CTRL=fire)xasteroids Xbased Asteroidsstyle Arcade Gamexblast Multiplayer Game (Only Works In Minimode)xbomb A 'Minesweeper' Game With Shapesxbubble A Puzzle Bubble Clonexchain A Strategy Game For 24 playersxdemineur Puzzle Gamexevil Violent Sidescrolling Gamexinv3d 3D Space Invadersxjig Jigsaw Puzzle (Middle mouse button to mirror)xjump Jumping Gamexletters Type Falling Words Before They Landxmahjongg Tilebased Solitaire Gamexmille The Classic Game Of Mille Bournesxmpuzzles Collection Of Puzzlesxoids Asteroids Game (Right Shift To Fire)xonix Bally IIlike gamexpat2 Generic Patience Gamexscavenger A Loderunnerlike Platform Gamexshisen Shisensho puzzle gamexskat 3player card game "Skat"xsol X Solitairexsoldier shoot 'em up game (Amazing!)xtron Tron game for X11xvier a "Four in a row" gamexwelltris 3D Tetris like popular game similar to Welltriszangband A singleplayer, textbased, roguelike gamezatacka Arcade multiplayer game like nibbles
We finished testing all the games, but ran out oftime to test all the apps. We will bring you thosein Issue 4. We also had to remove the instructionfor installing Quake III The download site was nolonger available. We are working on providing ourown mirror of it. In the meantime, there should beplenty here to keep you entertained!
Special thanks to Chris 'tzj' Stagg for assisting me withthe testing. I would not have got the list compiledwithout your help. Thanks also To Antiloquax Hadyou not sent me your spare Pi, I would not have beenable to test anything.

Article by Jaseman

6

27
6-

17
5

Pin 06

Pin 11

Pin 01 3.3V

0V

GPIO17

R1

R2

R3

Pin 12 GPIO18

IN CONTROL
INTERFACING PROJECTS FOR BEGINNERS

BY DARREN GRANT

In the first part of this series we looked at using the Raspberry Pi GPIO port as an input to
monitor the status of a switch. In this part we learn about outputs.

We use the term INPUT to refer to the fact that
the computer is being controlled in some way
by an external event, such as our previous ex-
periment where the computer responds to the
press of a switch. An OUTPUT is where the
computer is controlling or communicating with
the outside world.

You are perhaps used to thinking of things like
the screen and keyboard as being part of a
computer but they are in fact peripherals, extra
parts that make it possible for the computer to
communicate with the outside world. A com-
puter is just a collection of chips on a circuit
board that has very little use until it has a way
of communicating with the outside world, a
computer that can do nothing more than talk
to itself is of little use. Put some software on an
SD card and plug the power in and the Rasp-
berry Pi is a complete operating computer,
without a screen however we have no way of
knowing what it is doing. A screen is an output
device, an example of just one of the many
ways that a computer can provide an output.

As we learnt last time, computers are binary
so a computer communicates with the outside
world by switching things on and off. The im-
age you see on the screen is produced by the
computer switching the individual dots (pixels)
on and off on the screen. We are going to
have the Raspberry Pi control the LED on our
breadboard experiment from last time.

Circuit Description

We are making one small change to the circuit
from last time. We turn the resistor (R1) 90°
so it is connected to points E1 & E5, this dis-
connects the LED from the switch. Instead we
connect a second GPIO pin to point D1 so that
the LED can be independently controlled.

When using the Raspberry Pi GPIO pins as an
output we have to be very careful not to draw
too much current. The 470Ω resistor in this
circuit limits the current to 3mA, just enough to
light a standard 3mm Red LED. ►

7

PART 2

SW1 - Tactile Switch J5, J8, Y5, Y8
R3 - 10kΩ Resistor D8, H8
R2 - 1kΩ Resistor I1, I5
R1 - 470Ω Resistor E1, E5
LED1 - Red LED C4, C5
Wire link X4, B4
Wire link X8, B8

Pin 06

Pin 01 Pin 11

Pin 12

Python LED Test Program

Create a new text file named ledtest.py and
enter the following program.

IMPORTANT
Before connecting anything to the Raspberry Pi
please be aware that incorrect connections could
cause damage. Please take care.

+3.3V

IO0

0V

LED1
R1

R2

SW1

R3IO1

8

#!/usr/bin/python

import time
import RPi.GPIO as GPIO
GPIO.setup(12, GPIO.OUT)

GPIO.output(12, False)
time.sleep(3)
GPIO.output(12, True)

Program Description

We start by including the time and RPi.GPIO
packages in our program so we can make use
of their functions by using import.

Next we configure GPIO pin 11 on the rasp-
berry Pi as an output.

Our program is a simple test, it sets pin 12 LOW
then waits 3 seconds before setting it HIGH.
This will switch the LED on for 3 seconds and
then off when the program ends. It might seem
a little odd that the LED lights up when we set
our output as FALSE. This is because one side
of our LED is connected to the 3.3V power, to
complete the circuit our GPIO pin has to be 0V.
When we set the value as TRUE our output is
set to 3.3V making both sides of the LED 3.3V
preventing a current flowing.

To start the program type the following com-
mand into the terminal window.

sudo python ledtest.py

The sudo command is necessary as programs
that use the GPIO port require super user
privileges within the operating system.

Pushbutton Test Program

Now we can combine the input and outputs to
reconnect the LED to the switch in software.
Create a new file called pushbutton.py and
enter the following program.

#!/usr/bin/python

import RPi.GPIO as GPIO
GPIO.setup(11, GPIO.IN)
GPIO.setup(12, GPIO.OUT)

while True:
 if GPIO.input(11):
 GPIO.output(12, True)
 else:
 GPIO.output(12, False)

Program Description

We start by importing the RPi.GPIO package
and configuring GPIO pin 11 as an input and
pin 12 as an output using the now familiar
“GPIO.setup” syntax.

By using ‘while True’ we create a never end-
ing loop so that everything below this will be
repeated until we choose to stop it.

Our program keeps checking the status of pin
11 that will always be True (High) while the
button is not being pressed. As soon as the
button is pressed the GPIO pin goes low and
our result will be False: at which point we set
GPIO pin 12 to be false (Low) to light up the
LED.

® This article is sponsored by Tandy.
All the components mentioned in this series and much more
are available from the new Tandy online shop. Many new
components being added daily.

www.tandyonline.co.uk
9

When you have had enough press the
Control+C keys to stop the program.

Having the LED light up when the switch is
pressed is not terribly useful as it just gives us
the same result we had before when the LED
was directly connected to the switch, so let’s
make something a bit more interesting.

Electronic Die

Because the LED and switch are now inde-
pendent we have a great deal more flexibility.
We will now write a program that will flash a
random number between 1 and 6 when the
button is pressed.

#!/usr/bin/python

import RPi.GPIO as GPIO
import time
import random
GPIO.setup (11, GPIO.IN)
GPIO.setup (12, GPIO.OUT)

while True:
 if not GPIO.input(11):
	 	 flash	=	random.randint(1,6)
 while not GPIO.input(11):
 GPIO.output(12,True)
	 	 while	flash	>	0:
 GPIO.output(12, False)
 time.sleep(.5)
 GPIO.output(12, True)
 time.sleep(.5)
	 	 	 flash	-=	1
 else:
 GPIO.output(12,True)

Program Description

The program runs a continuous while loop
waiting for the button to be pressed. Once the
button press is detected we generate a ran-
dom integer value between 1 and 6. An integer
means a whole number rather than a floating
point number so we get numbers like 2 & 3
rather than 2.45678. Once the random num-
ber has been generated we wait for the button
to be released before continuing to prevent
cheating.

When the button is released we enter a count-
down loop that flashes the LED and reduces
the count by 1 after each flash until it reaches

0. The program then returns to the main
loop where it waits for the next button
press to start the process again.

Conclusion

We have now covered the basics of how
to monitor an input and switch things on
and off using an output. With just this
simple set-up of 1 switch and 1 LED we
can already make something useful.

Why not try modifying the pushbutton.py
program so that the LED is on but goes
off when the button is pressed, there is
more than one way of doing it, can you
see two or more possibilities?

Many people have been asking about
how to control something that requires
more power than a small LED. In the next
instalment we will look at the various op-
tions available. ●

In this issue, we wil l explain why
Linux commands behave the way
they do. We wil l also explore how
to join commands together as
bui lding blocks to do some useful
things.
The Linux command line is not very polite or friendly.

It never tel ls you if things went well , and spits out

gibberish when things go wrong. This month's article

tries to explain why the Linux command line behaves

this way and to help you understand why it looks the

way that it does.

The Linux command line is so unfriendly, you

probably wonder why nobody ever improved it to

make it more human-friendly. The reason is that the

output from the command line was never designed to

be read by a human, it was designed to be read by

computer programs. Let’s take an example of a really

unfriendly command and try to make sense of it.

One of the most useful commands in Linux is the find

command. It al lows you to find a fi le if you know the

name or part of the name. As an example we wil l try

to find every C program in the system. A C program

should have .c at the end of its name. So let’s try this

command…

find / -name *.c

This should find all fi les named “*.c” (where * means

we wil l accept anything) starting from the top of the

fi le system (/) . Unfortunately, al l you get is a heap of

meaningless rubbish. This is the sort of thing that

gives the Linux command line such a bad name.

How can a command be so useful i f you can't read

the output?

First of al l , we have to get rid of al l the errors which

are shown. You may notice that al l of the errors

include the text “Permission denied”. This means that

the user does not have the authority to do something.

When you see “Permission denied” it is often a good

idea to try adding the word sudo to the beginning of

the command. This tel ls the command line that you

want to run the command as a super user, not a

normal user. So let’s try this command…

sudo find / -name *.c

At last the errors are gone and we have a list of al l of

the C fi les on the computer. But it’s not very friendly.

You just get a l ist, nothing at the beginning to say

“Here is a l ist of your C programs” and nothing at the

end to say “End of l ist, have a nice day”. This l ist was

obviously never intended to be human-friendly. Why

was it designed this way? If not intended for a human

to read, who was it intended for?

One of the magical things about Linux is that the

output from one command is designed to used as the

input for another command. This al lows us to join lots

of simple commands together to create more

complex results. As an example, let’s take the l ist of

C programs and send the l ist to a fi le. Try this

command…

sudo find / -name *.c > mylist

How to enter very long commands
As a beginner, you may never expect that you wil l be writing very long commands. But in this

article you can see that simple commands can be joined together to create very long commands.

Some commands may be so long that they are wider than your screen. In this case, just keep typing and let the

text flow to the next l ine. Do not press the Enter key unti l you have finished typing the command.

10

You should see no response. What the “>” symbol

means is that the result should be sent to a fi le cal led

“mylist” instead of your screen. We can see what is

stored in the fi le by using the command…

cat mylist

You should see that this fi le now contains the l ist that

should have been sent to your screen. So why is this

useful? We can now run another command on this

fi le, for example to sort the l ist, we would use the

command…

sort mylist

Or to find if the word “hel lo” appears in the l ist, we

could use the command…

grep “hello” mylist

Or to count how many lines are in the l ist, we could

use the command…

wc -l mylist

This shows that it is possible to run one command

which works on the output of another command.

However it is very inconvenient to need to create a

temporary fi le every time. Lucki ly, there is a way to

join the output of one command to the input of

another command. It is known as a “pipe” and is

represented by the symbol “| ” (see the top of page

1 3). Let’s see some examples…

A sorted l ist of al l the C programs

sudo find / -name *.c | sort

A count of al l the C programs

sudo find / -name *.c | wc -l

How many C programs contain the word “hel lo” in the

fi lename?

sudo find / -name *.c | grep “hello” |
wc -l

This abi l i ty to join commands together is one of the

most important aspects of the Linux command line.

Just a few commands can be joined together to

create an infinite number of useful solutions. It is just

l ike giving bricks, timber and glass to a bui lder; there

is no l imit to what can be created when the pieces

are joined together.

This also answers another question; If you ask two

Linux experts how to solve a problem, why do you

get two (or more) answers? It is because the basic

bui lding blocks can be joined together in so many

ways to answer your question.

The most popular way to join commands together is

by using pipes, but let's explore some other methods.

To create a sequence of commands, the symbol “;”

may be placed between the commands. To i l lustrate

this, let’s create a nice human-friendly l ist of C

programs.

echo “Here is a list of your C
programs” ; sudo find / -name *.c ;
echo “End of list, have a nice day”

You can even place brackets “()” around a sequence

of commands to treat them like a single command.

For example, to send the result of a sequence of

commands to a fi le…

(echo “Here is a list of your C
programs” ; sudo find / -name *.c ;
echo “End of list, have a nice day”) >
mylist

How to edit commands
You wil l quickly notice that you are typing the same commands again and again. This may be

because you are making small changes to the command or you may be trying to fix errors.

It can be very frustrating to type the same long command several times. Lucki ly, there is an easier way. Press the

up arrow to scrol l backwards through a history of your recent commands. You can move around in a command

using the left and right arrows to change text. 11

A more complex method is to use the output of one

command as a parameter to another command. This

can take some getting used to. Let’s start with a very

simple example…

To show how many fi les are in your current directory,

use the command

ls | wc -l

To print this on screen, you could use the command

echo `ls | wc -l`

This uses the ` symbol (see the top of page 1 3) to

use the output of the ls command as a parameter for

the echo command. It does not look any different, but

we could bui ld a more complex command

echo “There are `ls | wc -l` files in
this directory”

To show the usefulness of this method, here is a

command to search for any C program which

contains the word “buffer”. This can be very useful i f

you want to find which fi le uses a particular variable

or function.

grep -l “buffer” `sudo find / -name
*.c`

Sometimes, the result of a command can be too

large to fit on one screen. As an example, let’s print a

l ist of al l the Python (*.py) programs in the system…

sudo find / -name *.py

You wil l see that there are a lot of Python programs,

you have no chance of reading them all on one

screen. Lucki ly, there is a way to stop the output to

give you a chance to read the text. You can pipe the

result to the command “more".

How to deal with errors
In the above text, we dealt with the errors in the find command by using the sudo command. To be

correct, this is cheating. It is a pure coincidence that sudo prevents the errors for the find

command, this solution wil l not work for every other command that you try.

To know how to hide errors, you need to know a bit about how the Linux commands work. Every Linux command

has input, output, and errors. Normally, the output and errors are mixed together, but they can be separated if you

wish. Earl ier, we saw that the “>” symbol sends the result to a fi le. I f you need more control, you can use the “1 >”

symbol to send the output to one fi le, and the “2>” symbol to send the errors to another fi le. As an example, try the

fol lowing commands…

find / -name *.c 1> mylist 2> myerrors

cat mylist

cat myerrors

As you can see, this sends all of the errors to the fi le named myerrors. This is sl ightly inconvenient because we

must delete this fi le later (the command is “rm myerrors”) . Lucki ly, there is a fi le designed especial ly for unwanted

output cal led /dev/nul l . This is basical ly a bottomless pit where you can dump anything you don’t l ike.

So, by using “2> /dev/nul l” we can be sure that the errors wil l be dumped and we don’t need the sudo command

any more. The example above to count al l of the C programs would look l ike

find / -name *.c 2> /dev/null | wc -l

12

sudo find / -name *.py | more

The command “more” lets you read through the result

at your own pace. Press the space bar for the next

page, or the Enter key for the next l ine. Press “q” to

quit.

The command “more” is very l imited, most people

use its more modern replacement named “less”. The

command is very similar to use…

sudo find / -name *.py | less

But the “less” command has the advantage that you

can use the arrow up/down keys and the page

up/down keys. You can press the keys “<” (jump to

start of l ist) “>” (jump to end of l ist) “q” (quit) .

Some useful commands
Here is a reminder of the commands that were used in this article. To learn more about a

command, you can read a reference manual by typing man fol lowed by the command, for example

type "man find" to learn about the find command. Press the "q" key to exit the manual.

Where are the ` and | keys?
I f you have trouble finding the ` and | keys, they are

circled in red in the diagram below for a UK

keyboard. These are keys that you would normally

not use if you are not famil iar with the Linux

command line.

cat file

echo "text"

find directory -name x

grep text file

less file

ls directory

more file

rm file

sort file

sudo command

wc file

Show the contents of a fi le

Print text on the screen

Find all fi les named x under a directory

Find text within a fi le

Show the contents of a fi le, al low the user to move up and down

through the fi le

Show a list of fi les in a directory

Show the contents of a fi le, al low the user to move down slowly

through the fi le

Remove (delete) a fi le

Sort the contents of a fi le

Run a command as super user

Count number of l ines, words and characters in a fi le

13

Downloading & Compiling Python PyUSB libraries
To be able to control your USB device you will need thePython USB Libraries.
The PyUSB Libraries have been written in collaboration bya team of 'opensource' volunteers.
To download them, open midori web browser and visit:http://goo.gl/N9L4e
This will give you the option to save the pyusb1.0.0a1.tar.gz into the Downloads folder. Type:cd Downloads
Then expand the compressed tarball file:tar xvf pyusb1.0.0a1.tar.gz
List the files and directories by typing 'ls'(You should see a new directory called “pyusb1.0.0a1”)
Change directory by typing:cd pyusb1.0.0a1(Type 'ls' again to see the contents of the directory)
Type 'sudo python setup.py install'
You can now start writing the program to control your USBdevice.
Writing The Python Program
Type this code in geany and save it as 'arm.py':
ROBOT ARM CONTROL PROGRAM
import the USB and Time libraries into Python
import usb.core, usb.util, time
Allocate the name 'RoboArm' to the USB device
RoboArm = usb.core.find(idVendor=0x1267, idProduct=0x0000)
Check if the arm is detected and warn if not
if RoboArm is None:

raise ValueError("Arm not found")
Create a variable for duration
Duration=1
Define a procedure to execute each movement
def MoveArm(Duration, ArmCmd):

Start the movement
RoboArm.ctrl_transfer(0x40,6,0x100,0,ArmCmd,1000)
Stop the movement after waiting specified duration
time.sleep(Duration)
ArmCmd=[0,0,0]
RoboArm.ctrl_transfer(0x40,6,0x100,0,ArmCmd,1000)

Give the arm some commands
MoveArm(1,[0,1,0]) # Rotate Base Anticlockwise
MoveArm(1,[0,2,0]) # Rotate Base Clockwise
MoveArm(1,[64,0,0]) # Shoulder Up
MoveArm(1,[128,0,0]) # Shoulder Down
MoveArm(1,[16,0,0]) # Elbow Up
MoveArm(1,[32,0,0]) # Elbow Down
MoveArm(1,[4,0,0]) # Wrist Up
MoveArm(1,[8,0,0]) # Wrist Down
MoveArm(1,[2,0,0]) # Grip Open
MoveArm(1,[1,0,0]) # Grip Close
MoveArm(1,[0,0,1]) # Light On
MoveArm(1,[0,0,0]) # Light Off
To try out this code type into the command line:sudo python arm.py(sudo is required as USB requires root access)
Give the arm room to move BEFORE testing.

You will notice that the ArmCmd has 3 values:
1st value controls the motors for the grip, wrist, elbow andshoulder.2nd value is for rotating the base. Valid values are 0 (Norotation) 1 (Anticlockwise) 2 (Clockwise)3rd value is for the LED at the end of the arm. Valid valuesare 0 (Off) 1 (On)
For the first value, you can combine movements by addingthe commands together, for example [32,0,0] + [8,0,0] =[40,0,0]. This would make the elbow and wrist go down atthe same time. Of course some combinations won't work,like attempting to operate the same motor in bothdirections.
For example, try MoveArm(1,[144,1,0]) andMoveArm(1,[96,2,0])
The idVendor and idProduct values (0x1267) & (0x0000)were obtained by typing at the command line:sudo lsusb v(This provides a list of details about all of the USB devicesthat are connected to your Pi)
The values for '.ctrl_transfer' (0x40, 6, 0x100, 0) wereobtained by 'USB sniffing' the device using software suchas 'Snoopypro' for Windows. These hexadecimal numbersrepresent the 'USB protocol' for the robot arm. You canthink of it as the language that the arm's circuit boardcontroller understands.
The value 1000 at the end of .ctrl_transfer is a timeoutvalue for sending the command to the USB device.
This is the bare minimum of what you need to be able tostart programming your robot arm. If you wish to take your

14

knowledge further and eventually have the ability toaccomplish much more I have included some extrainformation about how USB devices such as our robot armactually work to help you get started off.
A Basic Introduction to USB Devices

All of the robot arm's motors are connected by wires to thecircuit board. By sending signals to the circuit board we cancontrol each of the motors. This circuit board is a USBdevice.
The protocols and methods used by USB are verycomplicated and events happen so quickly that it takessome clever software such as a USB sniffer to allow us tomonitor what is going on. This port is also so strange thatno one can even agree on who invented it or why! Somesay it was designed to cut down the number of wirespoking out of the back of your computer and it looks like the“Apple Desktop Bus” from the early Apple computers – so itmust have been invented by Apple. Others disagree andpoint out that it works like a 10 Base T Ethernet (computernetwork) with a star topology so it can’t be anything to dowith Apple. I don’t think this argument will ever be won.
USB devices have a “Vendor ID” and a “Product ID”.These ID's have to be issued by a special organisation(USB.org) and they differentiate between all the differentdevices on the market and allow your computer torecognise what it is when you plug it in. That's why whenyou plug a mouse into your computer it knows that it's a“Acme Optical Mouse” and not a “Eastern Electric MyPersonal Storage Pad”. (Or in our case an “OWI EdgeRobot Arm”)
Within the circuitry for USB devices are "endpointaddresses" . USB devices use “pipes” (dedicated lines fortransmitting data to and from the device and computer). Atthe end of the pipe in your computer is a USB “hub” (whichworks in a similar way to a network hub. It allows devices tobe attached to branches that all trace back to one commonpoint). The "endpoint" is at the other end of the pipe in ourUSB robot arm device and the address specifies where itis. Some USB devices are called “composite” devicesbecause they combine two or more different devicestogether (like a webcam which also includes a built inmicrophone). Such a device would have at least two endpoint addresses, one for the webcam part and one for themicrophone part.
When we are working with composite USB devices we mayalso need to refer to an interface number. Where a USBdevice is really made of several devices working togetherand each device is at an endpoint, then an interface groupsthose endpoints together to allow the separate devices towork together to perform a single function. The interface isreferenced by an “interface number”. This number is theindex for the device so that the USB controller knows whichinterface to talk to. The first interface number is “0”. Thesecond interface is at “1” and so on.
As far as the control computer and USB is concerned, ourrobot arm is a single device (it is a circuit board whichswitches some electric motors on and off when it receives

the right signal from the USB) and so it is very simple towrite USB control programs for it.
You can consider that the circuit board included with therobot arm is like three rows of eight switches (or otherwiseknown as three bytes). When the computer sends the rightsignal to it via the USB it turns one or more of theseswitches on and in turn this starts a motor on the robot armturning in one direction or another.
The robot arm circuit board actually uses a numberingsystem called "binary". When you send a control code suchas [128,0,0] these numbers are converted into their binaryequivalent. For example this particular command wouldbecome [10000000, 00000000, 00000000]. The "1" in thefirst binary number is equivalent to turning on the switchthat would start the shoulder motor turning.
When data is sent to and from any USB device theinformation is always sent in a series of bytes, or eight "on"and "off" / "1" or "0" signals like this. These signals areinterpreted by USB devices in different ways and allowthem to perform all the different kinds of functions that theyare capable of.
Next Steps For The Skutter

At the moment, even with our own Python programscontrolling our robot arm, it is still not much more than atoy. It still has no sense of where it is or what it is doing.Eventually we want our robot to be able to accomplish“missions”.
Our robot is going to have a number of sensors added to itto monitor position as well as to include a kind of roboticsense of sight. The values from these sensors will need tofeed back into its Raspberry Pi “brain” via the GPIO. If youhave started following the "In Control" series in thismagazine you may be able to imagine how we could startto accomplish this.
Our Skutter Master Control Program will need to take thesesensor values, interpret them and make decisions aboutwhat to do before directing the arm and motorised baseabout where and what to move and how much to move by.
In the next article we will investigate a number of ways inwhich we can provide this required "sensory feedback" toallow the robot arm to become much more than a simpletoy.
In future articles we will look at ways of adding a motorisedbase with wheels to the robot arm and finally we willexamine some ways of giving our "skutter" some kind of anartificial intelligence. I will be writing these articles as Icontinue to build up my own version of the robot. I hopethey will be of use to you or encourage you to start yourown robotics project. Looking forward to seeing you allagain soon!

15

7. Insert the 26 way ribbon into an IDC connector,

ensuring the marked wire and the marked pin (Wire 1

and Pin 1) are l ined up.

Leave a little bit of cable protruding through the

connector.

4. I f your cable has connectors already on it, careful ly

cut them neatly off (either with the knife or pair of

scissors).

5. Offer up the marked ribbon and ensure that wire one

l ines up with the connector pin one and that pin 26 is

where you have marked it to be. Double check before

cutting careful ly between wire 26 and 27 for about

25mm (I find it easier to press the knife into the cable

at the 25mm point and cutting back to the end.)

6. Take the two ends of the ribbon in each hand and

pul l slowly and careful ly (in a tearing action) the two

pieces apart producing a 26 way and a remainder

ribbon.

Getting Started - Perparing Your Cables

and Connectors

1 . Take your ribbon cable and locate the marked wire

indicating wire one.

2. From the marker wire count off 26 wires in the

ribbon then mark the gap between wire 26 and 27.

3. Take an IDC connector and identify pin one (in the

image above, under the left-most pin look careful ly and

you wil l see a small triangle, thats pin one).

In this article I will describe a cheap way
to protect your GPIO connector from
accidental shorts and physical damage,
and at the same time provide a GPIO

Socket which can be easily connected to at
almost no cost.

What You Are Going To Need

Components

• 2 x 26 Way IDC (Insulation-displacement connector)

Ribbon Socket

• A length of ribbon cable (with 24 wires or more). An

old Floppy drive cable, or an old IDE Hard-drive cable

is ideal (older type with 40 wires, rather than the finer

80 wire ones).

• (Optional) A few inches of 2mm heatshrink sleeving,

or fai l ing that, insulating tape.

• (Optional) An IDC pin header, I rescued mine fom an

old motherboard.

Tools

• A sharp modell ing knife

• A Workbench Vice or if very careful a pair of

pl iers/molegrips

• (Optional) A few inches of solder

• (Optional) A basic electronics soldering iron

16

TToo PPrrootteecctt aanndd SSeerrvvee
yyoouurr RRaassppbbeerrrryy PPii

Optional Extra - Making Pin & Wire

Connectors

1 . First take the IDC header and careful ly pul l the

individual pins from the header using your pi lers.

Strighten any which get bent with the pi lers.

2. Next we wil l take the remainder ribbon cable and

strip it into individual wires. With the modell ing knife,

do the same as we did previously to spl it out the ends.

1 . Make sure the ribbon is square with the connector.

2. I f using pl iers (with a piece of card protecting the

connector (not shown in the picture)) :

Gently squeeze first one end of the connector unti l the

cable starts to push the wire between the spikes. Now

go to the other end of the connector and repeat. Do

the same about a third and two thirds along the

connector. Continue this unti l the side cl ips latch into

position. Ensure the wires are evenly squashed

between the body and clamp of the connector.

Remember its essential to keep an even progress

across the width of the connector.

I f using a Vice, close the Vice unti l i t is just holding the

cable between the connector body and the clamp,

ensure for the last time that pin1 and wire1 are where

they should be and that the cable is square with the

connector. Tighten the Vice unti l the connector is

latched.

3. Determine how long you want the cable to be (for

good signals don't make it too long, less than 1 5cm (6

inches) is ideal) . Position the second IDC connector

where you want it, ensuring it is the correct way round

and repeat the clamping process..

The Tricky Bit - Making connections

I usual ly use a small bench vice for this, but fai l ing that,

a pair of pl iers or molegrips wil l have to suffice.

Wires - Easy Breadboard and Header Links

Now you have a neat 26 way socket in which you can

easi ly connect wires to and from breadboards and

other circuits. The simplest option is to buy some

single sol id core insulated wire (0.6mm/22 AWG is

ideal) . Single core is recommended as wires with

multistrands are difficult to insert into the socket holes.

You can usual ly buy large rol ls of wire from common

suppliers or there are several ebay sel lers which wil l

provide a range of colours and lengths by the meter.

Alternatively, you can fol low the instructions below to

create your own flexible pin connectors, which makes

great soldering practice too.

4. Now careful ly trim the cable ends as close to the

connector as you can with the modell ing knife.

5. I f you have a multimeter avai lable, it is advisable to

check through the connections to be 1 00% sure there

are no shorts or bad connections.

GPIO Connector for your Raspberry Pi? ...Done!

Gert van Loo has posted a YouTube video showing

making a GPIO cable using a vice, avai lable here.

http://goo.gl/DC4Sf

(continued over page...)17

Your connection wires are now complete!

Repeat for as many wires as you want to make.

7. Taking care not to burn yourself (the pin wil l get very

hot!) , solder the wire to the pin. Ensure you trim any

stray strands, if you have any. Do the same for the

other end.

6. Take a pin, put the twisted end of the wire in the

centre of the pin and twist the bare wire around the pin

toward the end.

3. Careful ly seperate out each individual wire, being

careful not to rip the break the insulation.

4. Take a length of the seperated wire and careful ly

remove about 1 5mm of insulation from each end.

5. Twist the strands together on each of the ends.

8. Take the heatshrink sleeving and cut two lengths

about 5-1 0mm long.

9. Now slide a length of heatshrink sleeve over the

soldered joint leaving about 1 0mm clear to the end of

the pin (the wire should come out one side, the pin the

other) . Next apply a l ittle heat to shrink the sleeve over

the joint. The side of the soldering iron's tip wil l suffice,

a heat gun or even a hair dryer wil l work.

18

Final Warings - Double Check

Satisfy yourself that al l is well before connecting

ANYTHING to the socket. Check your connections

and if possible test any voltages (always between 0v

and 3v3) and/or currents present on the circuit.

These GPIO pins connect directly to into the Raspberry

Pi processor with very l i ttle electrical protection! The

"Magic smoke", once let out, cannot be replaced

without tears (the smoke resulting from burning the

insides of the Raspberry Pi processor) .

Article by Mike G8NXD

with Meltwater

Image above: GPIO Socket Pinout

Image below and top right: A short GPIO header in use.

Image bottom right: A very brave Pi-to-Pi GPIO connection!

Important Piece Of Pi - GPIO Socket

The Pinout of the GPIO Socket is now subtly different

to the board's pin header.

WHILE THE PIN NUMBERS ARE STILL CORRECT

THE VIEWED POSITION IS NOT.

Pin 1 is sti l l Pin 1 but its on the opposite side to

Raspberry Pi pin header (as shown on the RPi Wiki,

http: //goo. gl/Oh1p6) . To save yourself some

heartache, it is recommended you clearly label Pin 1

and you keep a copy of the fol lowing pinout diagram

handy.

Here is the corrected pinout for the GPIO SOCKET

viewed into the socket. Note, Pin 1 is the 3v3 pin and

connector's "key" is shown (by GPIO22) which also

indicates which side Pin 1 is on.

19

20

At age 5 or 6 I was fortunate to have access to a ZXSpectrum 48+. . . a passion for
electronics and resulting career was the end result. Many years later, the Raspberry Pi is
waiting to inspire the next generation of engineers.

Meeting Pi

1 . Hardware Introductions

Prior to getting my Raspberry Pi, I introduced

the idea of circuits, electronics and

computers. Firstly, I opened up a desktop PC

and allowed some hands on (tightening of

screws while I replaced the power supply)

and explained the various parts and what they

did (in a general basic level) , as well as some

basic electrical safety!

I 'd previously purchased a $5 TI LaunchPad

development board since it was ideal for pre-

RPi playing. I used this to famil iarise her with

bare component boards, understanding the

idea of touching and interacting with switches

and lights. Alternatively any basic chi ld/baby

toy could be dismantled to give a similar

introduction (power, input, control, output

etc.) .

Just keep a balance, don't get carried away

and flood them with information.

Al low them to ask about any parts and ask

them what they think things do (you may be

surprised at some of the answers you get!) .

Impressed rating: 4/5

Seeing the guts of a real computer is exciting, and

making things happen by pressing buttons gives a

sense of control.

Independence rating: 0/5

You wil l need to take the lead in this activity to direct

and teach them about simple electronics.

When introducing the Raspberry

Pi to chi ldren it can be tricky, as

it is not a polished smooth

process yet. Chances are, if you

are unfamil iar with things, you may hit

the odd roadblock, so it may be

pertinent to have a sneaky go

beforehand and ensure you have any

"wrinkles" smoothed out. This

includes having a test run of the

software you want try. The key

here is making things look

simple, as it wi l l encourage

them to have the

confidence to try it

themselves.

What to do?

Try to tai lor the experience to pick up on

their interests and ski l ls, ask them for

ideas and suggest possible things they can

do.

Remember to take things slowly, you may be

keen to show them everything al l at once,

but be careful not to overwhelm them.

Young chi ldren in particular may not want

to focus on a single thing for long

periods, so if they are bored with

something, switch to something else

or come back to it another day - let

them drive it.

Test Subject - Rosi e Age 5

Interests:

Ani mal s, Drawi ng, Readi ng, Wri ti ng, Pri ncesses,

Anythi ng Pi nk, Si ngi ng and Danci ng.

TI LaunchPad (http://www.ti .com/launchpad)

21

4. Teaching "Scratch" To Draw Spirals

By using some basic steps in scratch it was

easy to instruct him (the cat) to dart around

making spirals. After the basic program was

set up I asked Rosie what she wanted him to

do, smaller spirals, larger, the other direction.

Colours.. .so we made one of the spirals green

the other blue.

Now leaving her to run it, and showing her

how to get back to the main screen each time,

she was control l ing it herself and making the

changes. I turned away for a few mins, and

magical ly scratch was drawing in pink!

A few more adjustments and scratch was

spinning out several spirals in multicolours

and all different directions.

Not bad going for a first visit!

Impressed rating: 4/5 Even simple spirals were lots

of fun, simply because she could control them.

Independence rating: 4/5 With time I think she would

pick up most of the concepts. Even at age 5 she was

able to read and understand the different scratch

commands.

2. Drawing

You can introduce control of the mouse and

co-ordination, simply by using a basic

drawing application. Starting with a basic

brush you can then introduce shapes and fi l l

tools, which wil l al low them to generate some

interesting and colourful drawings. This is

excel lent to bui ld up their confidence if they

are not famil iar at al l with computers. You can

try GNU Paint (gpaint) , very similar to MS

Paint in windows.

Impressed rating: 2/5

She has done it on other computers.

Independence rating: 4/5

This was easy to pick up without too much assistance.

3. Information Super-Highway

To help with her project on Zebra's I showed

her how to google some facts and pictures of

zebra's using her Raspberry Pi.

Impressed rating: 2/5

Again we have done this on other computers before.

Independence rating: 3/5

Ensure you enable "Safe Search" and guide them to

useful known sites (BBC, Wikipedia etc).

6. Writing...

I t may seem total ly si l ly to most of us, but

even a basic text editor (leafpad) with no

features at al l can inspire a chi ld to create and

learn. By encouraging them to write their own

stories, or even copy one of their favourites

isn't just a good English lesson but it helps

them master the archaic layout of the

keyboard and get comfortable with the

computer.

Add a simple word processor (i .e. Abiword)

which supports images and you can create

mini-story books with images using the

internet (search for: "cartoon castle", "cl ipart

princess" etc. obviously due to copywrite any

images wil l need to be for personal use).

Impressed rating: 4/5 Writing real stories is lots of

fun, (and yes... i f they can copy a story, then they can

copy programming code, in time...) .

Independence rating: 3/5 This wil l depend on their

writing and keyboard ski l ls to how much or l i ttle help

they wil l need.

So far.. . I 've only just covered some of the

basics the Raspberry Pi is able to do, even for

a chi ld as young as 5. The key is to give them

the tools, show them how and let them

experiment. Step away from the keyboard

and let them wobble the mouse cursor

around. Let them try, they'l l ask for help if

they need it.

Article by Meltwater (Drawings by Rosie)

5. Making/Decorating Cases

Creating a case for their raspberry pi makes a

great project, be it made with

lego, cardboard, or decorating

an exisiting box.

Impressed rating: 4/5

Adding their own touches

wil l make it theirs.

Independence rating: 5/5

Let them do as much or as l ittle as

they l ike.

C is an excellent language for building fast and very

efficient programs. I t can be found in applications

where speed and memory footprint matter, such as

the LINUX kernel and data acquisition systems.

When learning a new language it is a good idea to

first solve the programming problem with pen and

paper before reaching for the keyboard. Pseudo-

code and flow diagrams provide methods for doing

this. Particular languages tend to prefer particular

solutions to a given problem. However, this is

something that can be understood with practice.

1 – Getting off the ground

Right, time to get something running. Here is a first C

program,

#include <stdio. h>

int main()

{

/* Print a string to the screen. */

printf("In the beginning. . . \n");

/* Return 0 to signal success. */

return 0;

} first. c

Edit, compile and run

The first. c program should be typed in using a

text editor. For this tutorial , nano is used as an

example text editor. Some useful nano command

are given in the table below,

Open two terminal windows, one for nano and the

other for compilation. (Using the default Raspberry PI

Debian image, a terminal window can be opened by

clicking on Accessories and then LXTerminal .)

Use nano to create a new file cal led first. c , type

in the program and save it. Before a C program can

be run it has to be compiled. On LINUX the GNU C

compiler (gcc) is used to compile C source code. In

the other terminal window compile the program by

typing, gcc -o first first. c

The gcc compiler wil l then attempt to compile the C

program and link it together with the standard

l ibraries to form an executable called first. I f the

compiler is successful, no messages wil l be printed

on the screen. I f an error is reported by the compiler,

check the line number where the error is reported and

try to compile the program again. When the program

has been successful ly compiled, run the executable

by typing: . /first

This wil l print the string onto the screen and return

zero to the operating system. In the BASH shell the

output value from this return statement is stored in

the $? variable. This variable holds the return

statement from the previous command only. Type

echo $? to print the value of $? on the screen.

Printing a string

The execution of the first. c program starts from

the main() function. The function has an integer

(int) return value, which is given to the left of the

function name. Any arguments passed into the

function would go within the parentheses () . In this

case, no arguments are passed into the main

function. The body of the function is defined by the

brackets { } , which is referred to as a compound

statement. A semicolon is used to complete each line

or statement within the compound statement. In the

first program there are only two statements, (i) a

printf function call to print a string to the screen

and (i i) the return statement. The printf function is

a standard l ibrary function, but for the program to be

compiled its declaration has to be included by

including stdio. h. The linker then finds the l ibrary

that contains the implementation of this function and

forms an executable.

When the printf statement is cal led it is given a

string. The string is del imited by quotation marks and

Command

nano file. c Open a new or existing fi le

cal led file. c

Ctrl+O Write the current fi le to disk

Ctrl+X Exit and ask if the current

fi le should be written

Ctrl+W Ctrl+T 1 0 Navigate to l ine number 1 0

Meaning

22

The Cave
A place of basic low-level programming

W. H. Bell & D. Shepley

contains the new line character \n . Before the

printf function call , a comment is written between

the /* */ braces. When writing programs, it is a

good idea to add comments to explain the program

to other users or for long-term documentation.

Keyboard and screen

There are many standard l ibrary functions defined in

the stdio. h header fi le. These functions can be

used to read from the keyboard and write to the

screen. Input values can be read from the keyboard

using the scanf function,

#include <stdio. h>

int main()

{

/*Declare an variable to hold a number */

int age;

/* Ask for input */

printf("How old are you? ");

/* Read a number from the keyboard */

scanf("%d", &age);

/* Echo the age */

printf("You are %d years old. \n", age);

return 0

} age. c

In the age. c program an integer variable is declared

to hold a value. The integer variable corresponds to

a space in the memory of the computer, which is

al located to hold the value. The user is asked their

age. Then the program waits for input from the

keyboard. The input is read from the keyboard using

the scanf function. The character code %d tel ls

scanf to read an integer from the keyboard. The

integer is written into the memory allocated to the

age variable by passing the memory address of the

age variable, which is accessed via &age . The age

value is then written back to the screen using

printf . Notice that printf also uses the %d

character code to denote integer output. More

information on functions in stdio. h can be found by

typing, man stdio

To exit the manual page, type q. There are many

LINUX manual pages, which cover other standard

l ibrary functions and the compiler options (man gcc).

Simple mathematical operations

Computers are able to perform many mathematic

calculations quickly. For example,

#include <stdio. h>

int main()

{

/* Declare three integer variables */

int x, y, z;

printf("enter two whole numbers, separated by

a space: ");

/* Read two values from the keyboard */

scanf("%d %d", &x, &y);

/* add the two values together and place the

result in z */

z = x + y;

printf("%d + %d = %d\n", x, y, z);

/*multiply x by 10 and then assign the result

to x */

x = x * 10;

printf("%d + %d = %d\n", x, y, x+y);

return 0;

} simple_maths. c

The program simple_math. c demonstrates

addition (+) and multipl ication (*) operators. In a

similar manner, subtraction (–) and division (/) can

also be used. Mathematical expressions within a

program are executed sequential ly. For example,

x=x*10 wil l start from the current value of x, multiply

it by ten and assign the result to x.

Challenge question

Find the errors in the program given below. There

are four errors, which need to be corrected before the

program wil l compile successful ly.

int main

{

int i = 100, j = 9, k;

i = i/10;

k = i - j

printf("Well done this program

compiles. \n");

print("%d - %d = %d\n", i , j , k);

return 0;

}

The solution wil l be given in the next tutorial .

23

24

The Scratch Forums

If you like Scratch, I 'd recommend checking

out the forum. I t's a very friendly onl ine

community.

You can upload your projects and share

ideas with other Scratchers!

http: //scratch.mit.edu/forums

This article is by anti loquax.

My Scratch id is 'racypy' and you can find al l

the scripts featured here in my projects.

I f you have any questions, requests or

suggestions, please email me:

anti loquax@sky.com

In this article, I 'm going to show you a few

programs to try in Scratch.

Have a play around with them unti l you

are famil iar with how to use variables,

conditionals and loops. With these basic

programming tools, there's a huge amount

you can do!

25

Scratch On!

26

T E S T E D !

In Issue 2 we showed how you can create a
graphics screen surface and draw shapes onto it.

This month we will look at overlaying more surfaces
on top of the screen surface. You can think of each
surface as being a separate window within the main
screen surface. Don't worry if this sounds
complicated, the following examples should help to
demonstrate the principle.

NOTE: For these examples, you will need both Python and Pygame installed on your computer.

You will notice that the sun surface has a
black background color. Surfaces are
always rectangular.

We will draw a simple picture with some grass, sky and a sun. We could draw this all on one surface.
The advantages of giving each object its own surface come when you wish to move objects around. If
you drew the sun onto the same surface as the sky, and then attempted to move the sun, you would
leave a yellow trail where the sun used to be. To fix that you would have to redraw the sky every time
the sun moved. With layered surfaces, you don't have to worry about your graphics leaving trails on
the screen like an etch-a-sketch.

PYTHON VERSION: 2.6.6 / 3.2.2
PYGAME VERSION: 1.9.2a0
O.S.: Debian 6 / Win7

We can make the sun surface appear to be round rather than rectangular by making black into a
transparent color. When it is transparent, the blue of the sky will come through, filling those black
corners...

THREE SURFACES

By Jaseman - 13 June 2012

import os, pygame; from pygame.locals import *
pygame.init(); clock = pygame.time.Clock()
os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Three Surfaces")
screen = pygame.display.set_mode([400,200],0,32) # The main screen
sky = pygame.Surface((400,200)) # A sky surface
sky.fill((200,255,255)) # Fill the surface in light blue color
grass = pygame.Surface((400,100)) # A grass surface
grass.fill((50,150,50)) # Fill the surface in green color
sun = pygame.Surface((40,40)) # A sun surface
pygame.draw.circle(sun,(255,255,0),(20,20),20)
screen.blit(sky,(0,0)) # Paste the sky surface at x,y
screen.blit(sun,(180,30)) # Paste the sun surface at x,y
screen.blit(grass,(0,100)) # Paste the grass surface at x,y

pygame.display.update()
pygame.time.wait(10000) # A 10 second pause before ending the program

27
(continued over page...)

We make black a transparent color on the sun surface by adding the line:
sun.set_colorkey([0,0,0])

This means anything that is drawn on the sun surface rectangle in color[0,0,0] will be transparent. The
graphics on surfaces underneath will show through the transparent areas.

This time we also alter the x,y position that the sun surface will be pasted. We will use the mouse
coordinates as the location for the sun and have the program running in a loop.

When you run the program and move the mouse around, notice how the sun behaves. If you move the
sun below the level of the grass is goes under the grass surface. This is to do with the order in which
the surfaces are pasted onto the screen. If you were to switch the screen.blit commands around for the
sun and grass, then the sun will be above the grass surface.

Notice the 'while True' section has an event handler added in to deal with the QUIT event. This just
helps to shut down the program smoothly when you tell it to quit.

T E S T E D !PYTHON VERSION: 2.6.6 / 3.2.2
PYGAME VERSION: 1.9.2a0
O.S.: Debian 6 / Win7

THREE SURFACES V2

By Jaseman - 13 June 2012

import sys, os, pygame; from pygame.locals import *
pygame.init(); clock = pygame.time.Clock()
os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Three Surfaces")
screen = pygame.display.set_mode([400,200],0,32) # The main screen
sky = pygame.Surface((400,200)) # A sky surface
sky.fill((200,255,255)) # Fill the surface in light blue color
grass = pygame.Surface((400,100)) # A grass surface
grass.fill((50,150,50)) # Fill the surface in green color
sun = pygame.Surface((40,40)) # A sun surface
sun.set_colorkey([0,0,0])
pygame.draw.circle(sun,(255,255,0),(20,20),20)

while True: # A never ending loop to keep the program running
for event in pygame.event.get():

if event.type == QUIT:
pygame.quit()
sys.exit()

mousex,mousey = pygame.mouse.get_pos()
screen.blit(sky,(0,0)) # Paste the sky surface at x,y
screen.blit(sun,(mousex,mousey)) # Paste the sun surface at x,y
screen.blit(grass,(0,100)) # Paste the grass surface at x,y

pygame.display.update()

28

In this slight variation, we've made the sun bigger, put a black circle in the centre of it and introduced a
new command to give the entire sun surface a 50% transparency:
sun.set_alpha(128)

The value 128 can be any number between 0 and 255. 255 being solid and 0 completely transparent.

T E S T E D !PYTHON VERSION: 2.6.6 / 3.2.2
PYGAME VERSION: 1.9.2a0
O.S.: Debian 6 / Win7

We would recommend you to do some more experimenting with the techniques demonstrated here. Try
making your own surfaces, drawing shapes onto them in different colours, and using the
surface.alpha() and surface.set_colorkey([]) commands to create transparency effects. Mastering these
will be essential if you are considering writing games, but they may also be useful in other applications
where display effects are required.

We enjoy getting your feedback, so please let us know how you get along.

Because the inner circle is coloured black, it
becomes transparent, giving the effect that
the surface has a hole in it. Move the mouse
across the horizon and watch carefully what
happens.

THREE SURFACES V3

By Jaseman - 13 June 2012

import sys, os, pygame; from pygame.locals import *
pygame.init(); clock = pygame.time.Clock()
os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Three Surfaces")
screen = pygame.display.set_mode([400,200],0,32) # The main screen
sky = pygame.Surface((400,200)) # A sky surface
sky.fill((200,255,255)) # Fill the surface in light blue color
grass = pygame.Surface((400,100)) # A grass surface
grass.fill((50,150,50)) # Fill the surface in green color
sun = pygame.Surface((80,80)) # A sun surface
sun.set_colorkey([0,0,0])
sun.set_alpha(128)
pygame.draw.circle(sun,(255,255,0),(40,40),40)
pygame.draw.circle(sun,(0,0,0),(40,40),15)

while True: # A never ending loop to keep the program running
for event in pygame.event.get():

if event.type == QUIT:
pygame.quit()
sys.exit()

mousex,mousey = pygame.mouse.get_pos()
screen.blit(sky,(0,0)) # Paste the sky surface at x,y
screen.blit(grass,(0,100)) # Paste the grass surface at x,y
screen.blit(sun,(mousex,mousey)) # Paste the sun surface at x,y

pygame.display.update()

Although there are many programming
languages, a lot of it is just different
ways to do the same thing, much like
spoken languages all have different
ways of saying “Hello, how are you”.
They all mean the same thing once
translated, but they’re said differently.
This section aims to explain some of
the basic fundamentals of
programming that are useful to know
for every language.

Variables
Variables are pieces of data that can
change throughout the course of the
program. There are different types of
variable, and they store different kinds
of data. Integers, for example, store
whole numbers, while strings store
text. A user input, for example, would
be a variable. Without variables,
programs would do the same thing
every time, which isn’t very useful.

‘If’ statements
‘If’ statements allow us to check things
within the programs. If the condition
being checked is true, then the code
within it executes. If not, then that
portion of the code is skipped. This
allows us to act upon variables. For
example, we could check if the player
of a game has scored enough points
to continue.

We can expand on ‘if’ statements by
telling the program to do something if
the condition is met, and another if the
condition is not met.

We can also expand upon ‘if’
statements more by checking two or
more conditions, such as if a character
is touching a danger AND isn’t
protected. We call these logical
operators.

The three are AND, which returns true
when both tests are true, OR, which
returns true if one or more of the test
conditions are true and NOT, which
returns true if the input is false, and
vice versa.

Loops
Loops repeat a piece of code until a
certain condition is met. This could be
used to repeat an animation, for
example.

There are different kinds of loops.
There are ‘do until’ loops, which repeat
the code while the test condition is
false, and ‘do while’ loops, which
executes the code while the test
condition is true.

With this knowledge, learning to
program in any language should be
easier. Try a few examples in Scratch
using the blocks shown to see them in
action.

29

'Magpi kind of reminds me of the
magazine that I used to get as a
kid to help me out with my acorn
electron...10 REM and so on!'

Simon Frost
'Your articles and easy to follow
guides are an absolute lifesaver.'

David Deen
'Excellent publication and
extremely informative. Reading
this really did take me back to the
80's when computing was about
the fun of learning. Back then the
magazines got me into learning
basic and now with your excellent
articles I think I will be starting out
in Python. This is really inspiring
and just what computing needs to
get people interested again. Well
done and please keep it coming!'

Philip Tyerman
'What a fantastic magazine, just
received my Raspberry Pi in the
post today and the articles in issue
2 of MagPi just hit the spot,
brilliant.'

JOHN FRANKS
'The magazine is awesome! I can
now get back to programming,
which I never did after BASIC
stopped being bundled with
computers!'

Francis Medeiros
'I love reading this magazine, it is
great. ... I would love to subscribe
to this and get a hard copy
delivered to me every month.'

Jack Moorhouse

'The forums are ok, but there is a
real lack on hand holding and
starting from the beginning, which
your magazine seems to have got
spot on.'

Alex Wilkinson
'Thank you for putting this
together. It helps newbies like
myself to get a head start.'

Noris
'I've had a quick skim through it
and the contents look great. Really
nice close up photos of the Pi and
lots of detailed descriptions of
what does what. Plenty for
everyone. That's my evening
sorted!'

grumpyoldgit
'loving the magazine. I'm new to
programming so finding the
magazine very useful.'

Richard

'Congratulations a very good
magazine for content. But its
heavy use of dense colours
which I do not think adds to the
appeal means that I am very
loath to print it. Also such use of
colours makes the magazine quite
difficult to read for many people
with various types of colour
blindness.'

Peter
'I would like to take a moment and
thank you for the efforts put forth
for the magazine! I have really
enjoyed both issues.'

Cody
'The magpi must be the most
useful and helpful tech magazine
i've ever read. And that's a lot of
magazines.'

Patrick Duensing
'I absolutely love the idea of
having a monthly magazine about
the Raspberrry Pi that is free to
download and has great tutorials,
software and hardware
information, with pictures and well
written text. I love how things are
going so far. I would like to
recommend that you guys set up
some sort of donation spot so I
may donate to you guys. I love
everything your doing so far! Keep
up the great work!'

Devin
'I've just downloaded issue 2 and
printed it. Great quality and info.
Thanks so much for all your hard
work.'

bigsi111
30

Feedback

Raspberry Pi is a trademark of the Raspberry Pi foundation. The MagPi magazine is collaboratively produced by an

independent group of Raspberry Pi owners, and is not affi l iated in any way with the Raspberry Pi Foundation. The

MagPi does not accept ownership or responsibi l ity for the content or opinions expressed in any of the articles

included in this issue. All articles are checked and tested before the release deadline is met but some faults may

remain. The reader is responsible for al l consequences, both to software and hardware, fol lowing the

implementation of any of the advice or code printed. The MagPi does not claim to own any copyright l icenses and

all content of the articles are submitted with the responsibi l ity lying with that of the article writer.

This work is l icensed under the Creative Commons Attribution-ShareAlike 3. 0 U nported License. To view a copy of

this l icense, visit http: //creativecommons. org/l icenses/by-sa/3. 0/ or send a letter to Creative Commons, 444 Castro

Street, Suite 900, Mountain View, California, 94041 , U SA.

The MagPi Issue 03 JUL 2012

Raspberry Pi is a trademark of The Raspberry Pi Foundation.

editor@themagpi.com

Other Resources and Weblinks

Ash Stone
Chief Editor / Administrator / HeaderJason 'Jaseman' Davies

Writer / Editor / Website /Page DesignsMeltwater
Writer / Editor / Photographer / Page DesignsChris 'tzj' Stagg
Writer / Editor / Photographer / Page DesignsBobby 'bredman' Redmond

Writer / Page DesignsDarren Grant
Writer / Page Designs0The0Judge0

AdministratorAntiloquax
WriterAlex Kerr
WriterW.H. Bell & D Shepley

WritersMike G8NXD
Writer

http://www.themagpi.comOfficial website of The MagPi magazine.
http://www.raspberrypi.orgOfficial home of the Raspberry Pi Foundation
http://inventwithpython.com/IYOCGwP_book1.pdfInvent Your Own Games with Python
http://thepythongamebook.comThe Python Game Book (DocuWiki)
http://www.cprogramming.com/C and C++ Programming Resource
http://www.element14.com/community/groups/raspberrypiElement 14 Community Group

Team:

tzj

HELP WANTED!
The MagPi Team are
looking for volunteers to
assist with:
Page Layouts (Scribus),
Artwork, Photography,
Testing, Other
Administration.
The current team are
putting in SERIOUSLY
long hours, so please do
help out. Working on the
magazine which is read by
over 100,000 readers is a
great educational
experience.
We would expect at least a
few hours of your evening
or weekend each week.

