
(helloworld.cc)1

CREATE A
MAKERSPACE

How to introduce a digital
making space in your school

IS COMPUTING BECOMING MORE EXCLUSIVE? • ITALY PUTS MAKERSPACES IN EVERY SCHOOL • GRADUATE FROM SCRATCH
TO PYTHON • CODING INTERACTIVE FICTION • PIONEERS PROGRAMME LAUNCHES • YOUR DIGITAL MAKING QUESTIONS
ANSWERED • 3D GRAPHICS WITH FREE SOFTWARE • INSIDE PICADEMY USA • THE IMPORTANCE OF PLAYFUL COMPUTING

PLUS

PAPERT’S
LEGACY

WELCOME TO THE MAGAZINE

FOR COMPUTING & DIGITAL MAKING EDUCATORS

NEW!

What we can learn from
the father of Logo, and
constructionism’s role today

PROJECT QUANTUM
Do your pupils really understand? Quantum
aims to help you ask the perfect question

Issue 1 Spring Term 2017 helloworld.cc

CODE CLUB CO-FOUNDER
CLARE SUTCLIFFE SHARES HER
THOUGHTS ON BREAKING THE
5,000 UK CLUBS MILESTONE,
WORLDWIDE EXPANSION,
AND WHAT 2017 HAS IN STORE

JOIN THE CLUB

Start plugging knowledge gaps today

LEARN NEW
COMPSCI SKILLS

Ideas to inspire and help you and your students

LESSON PLANS
AND TUTORIALS

http://www.helloworld.cc/

“Code Club has helped tremendously with the children’s

confidence and engagement in coding and computing”

Caroline Harding, Year 4 teacher

Code Club is free

Code Club is flexible

Code Club develops skills
including logical thinking,
creativity, and resilience

Code Club is part of the Raspberry Pi Foundation, Registered Charity Number 1129409

Find out more at: codeclub.org.uk

Code Club is a nationwide
network of volunteers and
educators who run free coding
clubs for children aged 9-11.

Our aim is to inspire the next
generation to get excited
about computer science
and digital making.

We have over 5,000 clubs across the UK,

teaching more than 70,000 children to code - join us!

Start a Code Club

in Your School!

http://www.codeclub.org.uk

helloworld.cc 3

elcome to the zeroth edition of our
new magazine for digital making and
computing educators.

We’ve seen a shift in the culture around
young people and technology, moving from a
time when they were content with staying in
touch and using other people’s programs, to
one where many are collaborating on digital
projects across a whole range of media and
technologies. Educators play a vital role:
setting challenges, broadening horizons, and
explaining ideas.

Hello World has been written for anybody
who’s introducing young people to computing
and digital making, including primary and
secondary teachers, volunteers, and parents.
The magazine will be free for all, forever
online, and free in print for teachers and
educators based in the UK. Visit helloworld.cc
to learn more.

Hello World is a collaborative project; it’s
a magazine by educators, for educators. Our
writers are directly or indirectly involved in
education, at and beyond school. We’re eager to
have an authorship as diverse as its readership,
so get in touch if you’d like to write for us:
miles@helloworld.cc.

It’s a magazine that draws on the expertise
and experience of the Raspberry Pi Foundation
and Computing At School (CAS), part of BCS,
the Chartered Institute for IT; it’s the successor to
CAS’s Switched ON newsletter, edited by Roger
Davies. His is a hard act to follow, and our hope
is that Hello World will hold true to the vision
behind Switched ON.

Please enjoy, be inspired, and help out.

Miles Berry
Contributing Editor

W
HELLO, WORLD!

CARRIE ANNE PHILBIN
DIRECTOR OF EDUCATION,
THE RASPBERRY PI
FOUNDATION

Carrie Anne Philbin is Director
of Education at The Raspberry Pi
Foundation, a Python Software
Foundation and Computing At School
board member, author, and YouTuber.

MITCHEL RESNICK
PROFESSOR OF LEARNING
RESEARCH, MIT MEDIA LAB

Mitchel develops new technologies
and activities to engage people
(particularly children) in creative
learning experiences. His goal: help
everyone learn to think creatively, reason
systematically, and work collaboratively.

MICHAEL KÖLLING
VICE-DEAN FOR EDUCATION
AND PROFESSOR OF CS,
KING’S COLLEGE LONDON

Michael Kölling is a Professor of
Computer Science at King’s College
London. His research interests are in
programming languages, software
tools, computing education, and HCI.

FEATURED THIS ISSUE

EDITORIAL
Managing Editor
Russell Barnes
russell@helloworld.cc

Contributing Editor
Miles Berry
miles@helloworld.cc

Sub Editors
Laura Clay, Lorna Lynch

DESIGN
Critical Media
criticalmedia.co.uk

Head of Design
Dougal Matthews

Designers
Lee Allen, Mike Kay

Illustrator:
Sam Alder

Cover photography:
Greg Annandale

CONTRIBUTORS
Jane Abrams, Rik Cross, Lucy
Hattersley, Phil King, Oliver Quinlan,
Laura Sach, Marc Scott & Rob Zwetsloot

Hello World is published by Raspberry Pi
(Trading) Ltd., 30 Station Road, Cambridge,
CB1 2JH. The publisher, editor, and contributors
accept no responsibility in respect of any
omissions or errors relating to skills, products
or services referred to in the magazine.
Except where otherwise noted, content in this
magazine is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0).

This magazine is printed on paper sourced from
sustainable forests and the printer operates an
environmental management system which has
been assessed as conforming to ISO 14001.

Hello World is a joint collaboration:

SUBSCRIBE
IN PRINT

FOR FREE
TURN TO PAGE

30

http://www.helloworld.cc
https://techliteracy.co.uk/
mailto:miles%40helloworld.cc?subject=
mailto:russell%40helloworld.cc?subject=
mailto:miles%40helloworld.cc?subject=
https://www.raspberrypi.org/
http://academy.bcs.org/
https://www.computingatschool.org.uk/

helloworld.cc4

NEWS AND FEATURES

CONTENTS

NEWS
Computing education news from
around the world

PHYSICAL COMPUTING
Carrie Anne Philbin talks about
learning through making

#INSIGHT
The science behind
Papert’s philosophy and more

THE WORLD IN A BOX
Using VR to support learning

CAESAR CIPHERS
Mark Thornbear shows us how
to do simple cryptography

08 24 40

42

43

44

58

68

32

36

16

18

22

23

PAPERT’S LEGACY
How the creator of Logo paved the
way for modern computing education

GREENFOOT AND TURTLE
Modern coding envionment
Greenfoot owes a lot to Logo

CS EDUCATION FOR EVERYONE
Understanding how to be more
inclusive with computing

HOW TO BECOME A VFX ARTIST
The skills needed to make graphics
for the silver screen

LEARNING THROUGH
INTERACTIVE FICTION
Paul Powell tells us about his
new experiment

PROJECT QUANTUM
Can Quantum test students better?

THE INFLUENCE OF LOGO
The history and legacy of Logo

BCS SCHOLARSHIP SCHEME
Get a BCS scholarship to learn
how to teach

EXPERIMENTS IN COMPUTING
A report on a new way to teach CS

PLAYFUL COMPUTING
What to teach before programming

SET UP A MAKERSPACE
Ten steps to creating a makerspace

PAPERT’S LEGACY Honouring the creator of Logo
and the godfather of the maker
movement, who has left an
indeible mark on CS education

24

94

8688

PICADEMY USA
Raspberry Pi’s free teacher training
program takes a trip across the pond

HOW TO START
A CODE CLUB
It’s incredibly simple to
set up a Code Club in
your school. We have
some tips to help you out

ROBOTICS IN SCHOOLS
Teaching by making robots

COVER
FEATURE

38

39

http://www.helloworld.cc

helloworld.cc 5

LEARNING
TUTORIALS & LESSON PLANS

MOVING FROM SCRATCH
TO PYTHON
Help students jump from visual to text-
based programming languages

JUNGLE MAZE SOLVER
Get your students programming a
robot capable of solving a maze

ESCAPE FROM
RAVENSWOOD MANOR
Build and play a text-based adventure

MY AMAZING CASTLE
Help students make a castle, and the
dragon that lives in it, with Scratch

FLAGS OF THE WORLD
Get a turtle robot to draw flags
from around the world

TURTLE GRAPHICS IN SCRATCH
Easy-to-adapt guides to using a turtle
with Scratch

3D MODELLING WITH BLENDER
How to use the free 3D
modelling software in the classroom

SNAP! - BEYOND SCRATCH
Like a more advanced Scratch, Snap!
allows for progression up to 16- to
18-year-olds

70 86

74
88

78
92

80
93

82 94

84 98

BLUFFER’S GUIDE: 3D PRINTERS
What you need to know about
3D printers

FAQS
Your CS questions answered

CODING APPS GROUP TEST
Five great apps that can help
teach programming

BOOK REVIEWS
We review some helpful literature

BREAKING DOWN CODE
Using maths to understand
programming languages

CODE CLUB INTERVIEW
Co-founder Clare Sutcliffe tells
us Code Club’s 2017 plans

SET UP A CODE CLUB
Tips on how to start a Code Club

ROBOTS IN SCHOOLS
CS education through robotics

CS FOR HIGHSCHOOL
Code.org’s Computer Science
course is for all high-schoolers

EMBRACING FAILURE
Nick Provenzano tells us about
the impossible

PICADEMY USA
A report on teacher training
in America

VALUES AND ETHICS
Thinking more about
Computer Science

JUNGLE MAZE SOLVER
LESSON PLAN

Show students how to
program a problem-solving
robot as it figures a way
out of a dastardly maze

50

70 16

WHAT IS 3D PRINTING?
Everything you need
to know to get by

PHYSICAL COMPUTING
Carrie Anne Philbin talks about how
making is a catalyst for creativity

46

50

52

54

56

60

62

64

http://www.helloworld.cc

helloworld.cc6

Everything you need to know about the new computing and digital making
magazine for educators…

Q WHAT IS HELLO WORLD?
Hello World Magazine is the new magazine for
computing and digital making educators. Written

by educators, for educators, the magazine is designed as
a platform to help you find inspiration, share experiences,
and learn from each other.

Q

A

WHO MAKES
HELLO WORLD?
The magazine is a joint collaboration between its
publisher Raspberry Pi and Computing at School,

part of BCS, The Chartered Institute of IT.
Hello World is sponsored by BT.

Q WHY DID WE MAKE IT?
There’s growing momentum behind the idea of
putting computing and digital making at the heart

of modern education, and we feel there’s a need to do
more to connect with and support educators inside and
outside the classroom.

A

A

Q

A

WHEN IS IT AVAILABLE?
Your new 100-page magazine will be available
three times per year in time for each new term

in January, April, and September. Would you like it to be
available more frequently? Let us know!

“HELLO, WORLD!”

Hello World is free now and forever as a Creative
Commons PDF download. You can download every
issue from helloworld.cc. Visit the site to see if
you’re entitled to get a free print edition, too.

IT’S FREE!

http://www.helloworld.cc

GET
INVOLVED

TODAY
There are numerous ways you can get involved in the magazine.

Here are just a handful of ideas to get you started:

Give us feedback
Help us make your magazine better -
your feedback is greatly appreciated.

Ask us a question
Do you have a question for our FAQ section or a
bugbear you’d like to share? We’ll feature your
letters next issue.

Tell us your story
Have you had a recent success (or failure) you
think the wider community would benefit from
hearing? Let us know.

Write for the magazine
Have you got an interesting article idea?
We’d love to hear about it!

FIND US ONLINE
www.helloworld.cc

@HelloWorld_Edu

fb.com/HelloWorldEduMag

SUBSCRIBE
IN PRINT
TODAY!

PAGES 30-31

GET IN TOUCH Want to talk? You can reach us at:

contact@helloworld.cc

helloworld.cc 7

http://www.helloworld.cc
https://twitter.com/HelloWorld_Edu
https://www.facebook.com/HelloWorldEduMag
mailto:contact%40helloworld.cc?subject=

helloworld.cc8

Ambitious plan aims to put digital computing and maker culture at the heart of every Italian school

ITALY PUTS MAKERSPACES
IN EVERY SCHOOL

he Italian Ministry of Education
has launched a national plan to

put creative spaces in every school.
The National Plan for Digital Education

(Piano Nazionale Scuola Digitale —
PNSD) hopes to infuse a digital creative
and maker culture in schools.

The ambitious plan aims to build
creative workshops and makerspaces
in every school. It also seeks to turn
school laboratories into FabLabs
(fabrication laboratories).

“Technologies have an enabling
role,” reads the PNSD’s ‘How To
Design A Creative Workshop’ school kit
(helloworld.cc/2jmQIgJ). “They act as a
digital carpet on which fantasy and
reality meet.”

n Preschool children will be introduced to engineering
and physics concepts through creative workshops

NEWS FEATURE

T

n Traditional laboratories in Italy are to be transformed into FabLabs

http://www.helloworld.cc
http://helloworld.cc/2jmQIgJ

helloworld.cc 9

“Serious play and storytelling will
find their natural home in these areas,
with a view to building cross-learning.”
Workshops are built around robotics and
educational electronics to promote logic and
computational thinking.

Plan for workshops
Schools will learn “how to design the
creative workshop, an innovative and
modular space to develop the crossroads
of craftsmanship, craft, creativity, and
technology,” the school kit says.

“Education in the digital age must be
viewed as a cultural initiative,” explains
the plan. “It begins with a new concept
of school as an open space for learning,
more than just a physical place: a
springboard that enables students to
develop skills for life.”

The plan is broad in scope. It will
affect training and learning across all

school settings; not just classrooms and
laboratories, but also administration, shared
spaces, and informal spaces.

“It is an organic plan for innovation in
Italian schools, with cohesive programmes
and actions organised into five main areas:
tools, skills, content, staff training, and
supportive measures.”

It’s “not enough to have a laboratory and
equipment to be makers,” reads the ‘How To
Write The Manifesto On Use Of The School
Lab’ school kit. “In addition to the safety
precautions, you need to prepare and to

assume certain cultural attitudes”.
The document outlines ways to prepare

students for a maker workspace. These
including changing the ambient air,
arranging the right light, and exploring the
environment. “Take your work seriously
without taking yourself too seriously,”
explains the school kit.

“The plan and its thirty-five actions are

EDUCATION IN THE DIGITAL AGE MUST
BE VIEWED AS A CULTURAL INITIATIVE“

also a request for collective commitment,”
says PNSD, “not only from those who
already work daily to create a more
modern and innovative school responsive
to students’ needs, but also from the
communities and private stakeholders
touched by the challenges that each school
faces every day.

PNSD has placed all of its school kits online.
These digital resources offer guidance to
schools on how to create workshops and
turn old laboratories into FabLabs.

The documents are in Italian but can
be understood using Google Translate and
other tools. They offer effective guidance for
any learning environment.

THIRTEEN SCHOOL KITS
ARE CURRENTLY AVAILABLE, INCLUDING:
• How to set up a laboratory
• How to design an alternative space

for teaching
• How to create a shared repository

of teaching materials
• How to organise cooperative learning

activities: the jigsaw
• How to design a creative workshop
• How to prepare a class

for cooperative learning
• How to design enlarged classrooms
• How to write a manifesto for use

of the school lab

More information: helloworld.cc/2jmXjry

PNSD SCHOOL KITS

http://www.helloworld.cc
http://helloworld.cc/2jmXjry

helloworld.cc10

Respected research organisation commissioning report into computing in UK schools

THE ROYAL SOCIETY
COMPUTING EDUCATION PROJECT

he Royal Society is undertaking
a research project to support

schools that are teaching the new
computing curriculum.

“Computing underpins almost all areas
of the modern world,” explains the Royal
Society. “Many new opportunities in
science and engineering could not have
been realised without it.”

The Computing Education Project
(helloworld.cc/2jn52px) is a programme
of work to gather and share evidence
of the teaching of school and college
computing curricula.

A new computing curriculum was
introduced into English schools in
September 2014. Called simply
“computing”, the curriculum replaces
the older ICT (“information and
communications technology”) approach.

“It places a greater emphasis on

Inside schools
The Royal Society is working with Pye Tait
Consulting to undertake research into how
computing education is currently taught
and resourced.

“It’s vital that we understand what’s really
happening in schools, particularly in terms
of teachers’ current confidence, knowledge,
and skills in delivering computing
education,” says a spokesperson for Pye
Tait Consulting. “This will ensure that the
case for future support is based on a full
and honest picture.”

A report will be published by the Royal
Society in early 2017.

The next stage will see detailed work
programmes to deliver on the project’s
objectives. The Royal Society is set to
produce teaching resources, professional
development opportunities, and
classroom projects.

coding, algorithmic thinking, and
computer science, rather than digital
literacy, typing, or elementary software
skills,” they explain.

“Employers are increasingly looking
for students who understand computing
beyond the levels of ITC,” notes
the Royal Society.

However, teachers need support to
implement the challenging curriculum.

Computing calls for the teaching of
concepts such as algorithms and logic,
plus the ability to create and debug
programs from Key Stage 1.

“Teachers need support from the
science community and industry to
increase the number of students
(especially girls) leaving school
confident in coding, algorithmic
thinking and computer science,” the
Royal Society adds.

n XXXXXXXXXXX

NEWS FEATURE

T

n Heathrow Coding Challenge at the Ellen Wilkinson School
for Girls, held on 8 March 2016. Image courtesy of Heathrow

http://www.helloworld.cc

helloworld.cc 11

APPS FOR GOOD
AWARDS ANNOUNCED

tudents who won the Apps for
Good Awards are now getting

ready to release their apps to the public.
Six teams of students from across the

UK designed apps to change the world for
good. Apps For Good teams up students
with professional app developers.

Fear Nothing, designed by a team of
9- to 10-year-olds from Westfields Junior
School, Hampshire will help children deal
with their phobias.

Another app, Changes, will help
children who are too nervous to ask adults
about puberty.

Debbie Forster, co-CEO of Apps for
Good, explains: “We’re incredibly excited to
have such talented and creative students
taking part, and we believe Britain’s future
as a tech hub is bright.”

S

Now in its fifth year, the Apps for
Good course is being delivered in over
800 schools. Over 25,000 students were
involved in 2016.

The Apps For Good website has
more information on the winners, and
how students can get involved in 2017:
www.appsforgood.org.

n Apps for Good partners students with
professionals who bring their ideas to life

MAKER ED SUPPORTS NATION OF MAKERS
he Maker Education Initiative
(“Maker Ed”) has announced support

for the Nation of Makers organisation
(nationofmakers.us).

Started by President Obama in 2014,
Nation of Makers is a non-profit dedicated to
helping makers through advocacy, the sharing

T of resources, and the building of community.
Maker Ed already reaches 170,000 young

people and family members through its Maker
Corps program. It recently partnered with
the Boy Scouts of America and Cognizant to
bring its Young Makers framework to even
more people.

It’s hoped that the two initiatives will work
together to put maker equipment into the
hands of young people across the US.

“We strive to make it possible for every
educator in America, with a particular focus
on those in high-needs communities, to
incorporate maker education into their
learning environments in an easily accessible,
highly adaptable way,” says Warren (Trey) C.
Lathe III, Executive Director of Maker Ed.

“We are excited by the efforts of the Nation
of Makers to continue to build upon the
grassroots efforts of the maker community
and President Obama’s Nation of Makers
initiative,” says Lathe.

“Maker Ed is pleased to support the Nation
of Makers in its efforts to work towards a
thriving, connected, and inclusive maker-
centred community of practice that will further
the ability of students, educators, adults, and
families to engage in making and sharing.”n MakerEd Tech Camp. Credit: Scott McLeod, Flickr

http://www.helloworld.cc
http://www.appsforgood.org
http://www.nationofmakers.us

helloworld.cc12

National College for Digital Skills seeking its second intake

ADA ACCEPTING NEW STUDENTS
da, the National College for Digital
Skills, is accepting applications

for its sixth-form courses starting
in September 2017.

The college has close links to UK industry
and has backing from several major
technology firms. Those partners include
Bank of America Merrill Lynch, Deloitte
Digital, Gamesys, IBM, and King Digital.

“This will pave the way for a network
of specialist colleges around the country,”
says Mark Smith, CEO and co-founder
of Ada.

Based in Tottenham Hale, London, the
college is well-placed to assist students
from diverse backgrounds. “This is a career-
catapulting education that, as a state-
funded College, is free to attend,” reads the
Ada website.

“IBM has chosen to work with Ada
because we were very encouraged by the
professional approach,” says Paul Milner,
Senior Manager of Graduate Schemes and
Learning at IBM.

Rosie Moffat, Senior Technical Manager
at Bank of America Merrill Lynch, was

Named after the famous 19th-century
mathematician and writer, Ada Lovelace,
the new college is devoted to teaching
advanced technical skills.

NEWS FEATURE

A

n The college has close links to companies such as IBM, Deloitte, and Bank of America

http://www.helloworld.cc

helloworld.cc 13

impressed by the approach to diversity.
“Because Bank of America Merrill Lynch
is a global company, we’re very keen to
employ students from a diverse range of
backgrounds,” she says.

“We’re looking for hard-working students
for our unique institution,” says Smith.
“Students and apprentices will have
constant exposure to our industry partners
throughout the work they do in the college,”
he tells us.

“I would encourage students to be
confident that when they come through
Ada, businesses like Deloitte will be really
welcoming,” says Marcus Williamson,
Technology Partner at Deloitte.

“The digital revolution and the World
Wide Web, invented by Britain’s own
Sir Tim Berners-Lee, are transforming
the UK economy,” says Baroness
Martha Lane Fox, Patron. “However,
the benefits are not distributed evenly,
and digital businesses don’t reflect the
diversity of their users. This is especially
disappointing because women such as
Ada Lovelace and the female codebreakers
at Bletchley Park in the Second World
War have been so important in the
development and creation of internet and
computing technologies.”

BUILDING TEAMS AT ADA
“We’re looking for digital explorers who can
work in collaboration with others for the future
technologies that society will need. And in return,
we will support them in their careers and help
them to flourish,” says Tom Fogden, Dean and
co-founder of Ada.

Students at Ada are seeded into one of three areas:
Creative: The designer whose ideas build beautiful
and compelling creative products and services.

Technical: The rigorous programmer, whose logic
and technical skills turn ideas into reality.
Entrepreneurial: The resilient go-getter that
takes the product to the market and nurtures
business relationships.

“All digital businesses need a combination of
three skill sets to succeed,” says Ada. “All of our
students will become proficient in each of the
skill sets, but will eventually specialise.”

The course also provides enough UCAS
points to move on to a top UK university or
enrol on a higher-level apprenticeship.

“It’s central to our ambition to turn the
area into London’s fastest and most dynamic
centre for digital innovation,” said Councillor
Joe Goldberg, Haringey Council’s Cabinet

Member for Economic Development, Social
Inclusion, and Sustainability.

In March 2016, the Mayor of London
announced £18 million of funding for
the college from the London Enterprise
Panel’s Further Education Capital
Investment Fund.

http://www.helloworld.cc
http://www.adacollege.org.uk/

helloworld.cc14

New programme aims to keep teens interested in computing and making

PIONEERS TEENS CHALLENGE
ioneers is a new programme for
coding clubs and teen makers from

the Raspberry Pi Foundation.
The new programme aims to keep

teenagers interested in coding and digital
making. It features a series of challenges

to inspire young digital makers. Every few
months, Raspberry Pi will set a new mission
for the Pioneers community.

“We want to find and support teenage
digital makers in the UK,” says Rob
Buckland, Director of Programmes. “The
aim of Pioneers is to provide guidance,
inspiration, and mentorship to teenage
makers, and the adults who mentor them.”

Young people aged between twelve and
15 will work together in teams, designing
and building their ideas to solve the series
of challenges. To volunteer as a mentor,
visitraspberrypi.org/pioneers to register
your interest.

Take the challenge
Every school term, the Raspberry Pi
Foundation will set a new mission for the
Pioneers community. Each challenge will
have a different theme.

n Pioneers will challenge teenagers to create amazing things
with technology

NEWS FEATURE

P “There is no right or wrong way to start
a Pioneers team,” explains Olympia Brown,
the Senior Programme Manager who will be
running the programme. “It can be student-
motivated or inspired by a mentor.

There is one condition. “We just ask that
each team finds someone over the age of
18 to act as a mentor,” says Olympia.

Pioneers will start their first mission in
January 2017. “Each team has to produce a
video of their work to show the judges and
the rest of the world,” adds Olympia.

Their projects will be judged, and prizes
will be allocated to the winners. “We all like
to be winners,” says Rob, “but it’s a great
chance to get together with like-minded,
creative souls and start a new community
where we share skills, make our ideas a
reality, occasionally blow things up, and lead
the way for the future in an increasingly
digital world.” helloworld.cc/2jqNIjG

n A series of competitions will inspire young
makers to turn their ideas into reality

http://www.helloworld.cc
http://helloworld.cc/2jqNIjG

helloworld.cc 15

MICRO:BITS FOR ASCENSION ISLAND
he Micro:bit Educational
Foundation is sending 60 micro:bits

to a school on Ascension Island, one of the
remotest places on earth.

The volcanic island is a British territory in
the equatorial waters of the South Atlantic
Ocean. At around 1,600 kilometres from the
coast of Africa and 2,240 kilometres from
Brazil, it’s as far away from the rest of the
world as you can get.

Despite its remoteness, Two Boats Village
School has around 90 children. They are all
children of BBC staff employed at the BBC
shortwave relay station on the island.

Alison Emerson, head teacher of the school,
says: “Imagine their absolute delight at the
prospect of receiving their very own BBC
micro:bit as a gift to celebrate the school’s
50th anniversary! No longer is our isolation a
disadvantage. The children of Two Boats will
be able to learn to code and make programs,
enhancing their learning tenfold. It brings our
children in line with 21st-century technology

T

and the endless possibilities open to them.”
Alison adds: “There are no buses or trains

on the island, no big-name fast food outlets,
and none of the three shops on the island

cater to the teen fashion market. By far the
biggest difference is the very limited, very
expensive, and very slow internet access
available to young people.”

n Schoolchildren on one of the remotest
places on earth will be getting micro:bit
computers (credit: NASA/Wikimedia)

PARADIGM CHALLENGE OFFERS $150,000 IN PRIZES
tudents from the United States
and around the world have been

awarded a total of $150,000 in prizes in the
Paradigm Challenge.

“The problem for last year’s competition
was how to reduce injuries and fatalities
from home fires,” says Michelle Lewis,
Collaboration Officer. “The 100 finalists used

S
a wide variety of technologies to create their
winning entries.”

The Fire Mitt was invented by grand prize
winners Emma Spencer and Scott Johnson
of Bothell, Washington. It is an oven mitt
that unfolds into a fire blanket. “It’s such an
obvious idea,” says Spencer. “We couldn’t
believe no one had thought of it yet.”

Spencer and Scott won $50,000, along
with an all-expenses-paid patent application
for the Fire Mitt.

Alexis Lewis, from North Carolina,
invented an “Emergency Mask Pod”
system for delivering smoke masks to
people trapped in the upper storeys of
burning buildings.

She designed the EMP using
Autodesk’s Tinkercad software and then
printed it with a MakerBot 3D printer.
“Tinkercad is free and easy,” says Lewis,
adding, “3D printers are not only fun, but
they’re also simple to use.”

“This year’s challenge is to come up with
new ideas for reducing waste in homes,
schools, and communities around the
world,” says Lewis.

The deadline for entries is 1 May
2017, and there is no cost to enter. More
information and sign-up information is
on the Paradigm Challenge website:
projectparadigm.org.n The Emergency Mask Pod can deliver smoke masks to people trapped in the upper storeys of burning buildings

http://www.projectparadigm.org

helloworld.cc16

hen I first introduced the idea of making music with
code to my students at Robert Clack School back in
2013 with Dr. Sam Aaron, our goal was simple: to

teach computer science concepts like sequencing, repetition,
conditionals, variables, and so on using simple text-based
code that output sounds or music. I was so focused on that
specific learning outcome that the music creation part didn’t
really register with me as being important. The first few
lessons went well, and the students seemed excited and
engaged by text-based programming; by the third lesson,
we decided to introduce variables as a concept. It was a total
disaster. Students were writing 12 or 13 variables to store
data (in this case they were different MIDI note numbers),
but then not really using them for their compositions. We
had introduced an abstract concept without a real-world or
immediate use case. Students were using variables for the
sake of using variables, and not to solve a meaningful problem
at hand. The situation could have been improved by setting
a task that better motivated the introduction of variable
usage, but this would have the disadvantage of moving
towards a much more prescriptive approach. That day, Sam
and I learned a valuable lesson which has stuck with me and
guided my work ever since: give students a small handful
of tools and let creativity guide the rest of their learning.
Composing their own music was guiding the learning, and
when students needed a construct to take their tune to the
next level, we introduced it.

The all-important question
Physical computing also provides a great opportunity
for creative expression: the button press! By explaining
how a button works, how to build one with a breadboard
attached to computer, and how to program the button to
work when it’s pressed, students have all the conceptual
skills they need to build a thing that does something. But
what do they want their button to do? Have you ever asked
your students? I promise it will be one of the most mind-
blowing experiences you’ll have if you do. Amy will want
her button to take a photo, Charlie will want his button to
play a sound, Tumi will want her button to explode TNT
in Minecraft, and Jack will want his button to fire confetti
out of a cannon! (Doesn’t he always?) Idea generation is
the inherent gift that every child has in abundance. As
educators, we’re always looking to see how engaged our
students are in the subject matter we’re teaching, and
young people are never more engaged than when they
have an idea and want to implement it.

Allowing this kind of free-form creativity and tinkering
in the classroom obviously has its challenges for teachers,
especially those confined to rigid lesson structures, timings,
and small classrooms. The most common worry I hear from
teachers and parents is “what if they ask a question I can’t
answer?”. Encouraging this sort of creative thinking makes
this almost an inevitability. How can you facilitate roughly
30 different projects simultaneously? The answer is by using

OPINION

W

Getting physical with computing can be a catalyst for creativity: the ethos of tinkering
and invention is being used in the classroom to inspire a whole new generation of makers

WHAT DO YOU WANT
YOUR BUTTON TO DO?

CARRIE ANNE PHILBIN DIRECTOR OF EDUCATION AT THE RASPBERRY PI FOUNDATION

http://www.helloworld.cc

helloworld.cc 17

Carrie Anne Philbin is Director of Education at The
Raspberry Pi Foundation, a Python Software Foundation and
Computing At School board member, author, and YouTuber.

those other computational and transferable thinking skills:
problem solving, iteration, collaboration, and evaluation.
Clearly specifying a problem, surveying the tools available
to solve it (including online references and external advice),
and then applying them to solve the problem is a hugely
important skill and this is a great opportunity to teach it.

Hands-off guidance
When we train teachers at Picademy, we group attendees
around themes that have come out of
the idea generation session. Together
they collaborate on an achievable shared
goal. One will often sketch something on
a whiteboard, decomposing the problem
into smaller parts; together the group will
divide up the task to work on. Each will
look online or in books for tutorials to help them with their
step. I’ve seen this behaviour in student groups too, and it’s
very easy to facilitate. You don’t need to be the resident expert
on every project that students want to work on. The key is
knowing where to guide students to find the answers they
need. Curating online videos, blogs, tutorials, and articles in
advance gives you the freedom and confidence to concentrate
on what matters: the learning. Outside of formal education,
events such as Raspberry Jams, CoderDojos, CAS Hubs,
and Hackathons are an ideal venue for seeking and receiving
support or advice.

Children are taught lots of concepts in
isolation that aren’t always relevant to
their lives or immediate environment

Cross-curricular participation
The rise of the global maker movement, I think, is in response
to abstract concepts and disciplines. Children are taught
lots of concepts in isolation that aren’t always relevant
to their lives or immediate environment. Digital making
provides a unique and exciting means of bridging different
subject areas, allowing for cross-curricular participation.
I’m not suggesting that educators should throw away all
their schemes of work and leave the full direction of the

computing curriculum to students. However, there’s huge
value in exposing students to the possibilities for creativity
in our subject. Creative freedom and expression guide
learning, better preparing young people for the workplace of
tomorrow. Occasionally we need to stop and ask, “What do
you want your button to do?”

http://www.helloworld.cc

helloworld.cc18

RESEARCH

#INSIGHTS

Making learning fun
t’s pretty clear if you know young
people that making is something that’s

going to engage them. Active lessons always
get the popular vote from classes, especially
if they let students make choices about what
they work on. The sense of achievement
you get from making something and sharing
it with others or taking it home is pretty
motivating too. There’s always a few who
would rather have a ‘theory lesson’, but the
engagement you get from making is usually
a powerful motivator. It’s hugely important to
get people engaged with learning for it to be
successful, but learning is more complicated

than simply paying attention to something.
Seeing learning through making as only a
way to engage people would be missing
something much deeper than that. For
proponents of Constructionism, it’s also
about how making interacts with the
way we develop understanding.

From concrete to abstract
Our culture of education in the West can
often be very focused on the cognitive; the
abstract thinking that can be clearly defined
in learning objectives, exams, and books.
We tend to think of formal education as the
process of coming to understand abstract

Learning through making. It’s part of the fundamental philosophy of ‘Constructionism’ behind Papert’s
ideas, and key to a practical subject like computing. On the surface it seems very simple; in a subject

based on making things, students learn by doing just that. Yet dig deeper, and the idea of learning
through making has some much wider implications to explore.

LEARNING THROUGH MAKING

I

http://www.helloworld.cc

helloworld.cc 19

ideas, with abstract ideas being the most
important level of understanding that can
then be applied to our everyday lives. Young
children usually start learning about numbers
through physically playing with concrete
objects such as blocks, counters, and toys,
but the aim is for them to move on to being
able to discuss and manipulate numbers
as abstract ideas. Dealing with concepts

totally on an abstract level is hard, and often
children have to return to these concrete
methods to support their understanding.
It takes time before children can add and
subtract without the convenient aid of fingers
to count on; even when this is mastered, they
often return to counters when learning about
the more complex concept of division. This
trajectory from understanding concepts in
concrete, real life terms towards being able
to explore them in the abstract is explored

well in the work of Jean Piaget, almost
universally taught in teacher education
courses across the Western world.

Affective learning
Whilst we see the cognitive side of learning
as key to understanding, we tend to see the
affective, or experiential and feelings-based, as
something useful for making learning engaging

and memorable, but not a fundamental part of
it. Papert saw this differently. In ‘Mindstorms’
he vividly relates the affective experience of
playing with cogs and gears as a child, and how
he came to an understanding that machines
could be both very structured but also creative
ways of interacting with the world.

Papert writes about changing his worldview,
not only in terms of gaining knowledge, but in
gaining a new relationship with knowledge.
Manipulating and exploring the concrete objects

of gears allowed him to develop an affective
understanding of how machines work, and
realise that these complex constructions are
knowable and understandable. Mark Surman,
CEO of Mozilla, describes this memorably as
seeing the ‘Lego lines’ in the world; the visible
joins that help you understand that something
was made by a person, and that with the right
learning that person could be you.

Learning as becoming
Such a change in understanding is a bit
of a shift from the way educators are
often encouraged to see learning; it’s a
different metaphor for the process. Much
of the time our language about learning
is based on what Prof. Anna Sfard calls
the ‘learning as acquisition’ metaphor,
where learning is seen as discrete
blocks of content that can be gradually
acquired. Paulo Freire pejoratively called
this the ‘banking model’. There are other
metaphors; when exploring the potential
of learning through making it helps to
think about the ‘learning as becoming’
metaphor, the idea that we learn in order
to explore and develop who we are as a
person, and the way we see our identity
fitting in to the world.

PAPERT WRITES ABOUT CHANGING HIS
WORLDVIEW, NOT ONLY IN TERMS OF
GAINING KNOWLEDGE, BUT IN GAINING A
NEW RELATIONSHIP WITH KNOWLEDGE

“

http://www.helloworld.cc

helloworld.cc20

n education we draw from so many
fields of understanding, including

our own subjects, the field of education
studied in our teacher training, our own
experiences of learning, and working to
support others to learn. One field that has
had quite some impact on thinking about
education in the last few years is cognitive
psychology, as its studies of how the mind
works have much to give us in thinking
about how students learn.

One such key insight is ‘cognitive load
theory’. This states that we have a limited
working memory of around seven bits of
information. This information is fragile,
only lasting a few moments, and so it’s
imperative for learning that we can transfer
information to long-term memory which is
much more robust. Experts in a subject have
lots of facts, ideas, and schema about an
area in long-term memory. When they see

a problem, they can relate the information
about it to what’s in their long-term memory
and solve this problem, using working
memory only for the very specific details of
the problem, rather than the structure of it
or the background knowledge needed to
understand it.

Computing and programming are
subjects in which there’s often a lot of new
information. Combine a problem to solve
that has a structure never seen before with
contextual information that

is new to the learner, and some features
of a programming language they haven’t
yet met, and you can be providing a
challenge that far exceeds students’
working memory limitations.

One solution to this with lots of backing
in research is the use of worked examples.

Students who learn a new concept and then
are given several worked examples to read
and study have been shown to do much
better when presented with similar problems
to solve afterwards. Worked examples can

WORKING MEMORY

New tools for learning
Much of this could be an argument for learning
through experience, but for Papert it was
using computers that he described as being
incredibly powerful. Why? Computers allow
us to manipulate abstract concepts in a way it
simply isn’t possible to do in the physical world.
Logo may seem like primitive software to us
in 2016, but Papert saw its potential to allow
children to actively manipulate concepts such
as angles and geometry. This made abstract
concepts accessible to children to manipulate
and understand by feel, much as a sand and
water tray in the early years allows children to
explore their understanding of basic physics.
We expect children to move on from this
playful, exploratory approach to learning as
they get older, but perhaps this is only because
we lack the tools to make more sophisticated
concepts concrete and accessible to them
to manipulate. The power of computers for
learning is described in Papert’s writing not
as being a way to deliver content to children,
but as a tool they can use to explore and
manipulate previously abstract concepts in a
concrete way.

Harnessing the tools
Making is often a fun and engaging way
to learn, yet its power can go beyond
engagement and towards a very different
way of learning and understanding the world.
It takes a shift in how we think about learning
and in the way we encourage young people

to use computers to understand the world.
These days, we certainly have more powerful
and sophisticated tools accessible to young
learners; perhaps the biggest challenge is
understanding how they can be used not only
to engage, but to learn in new ways that are
both effective and affective.

I

STUDENTS WHO LEARN A NEW CONCEPT
AND THEN ARE GIVEN SEVERAL WORKED
EXAMPLES TO READ HAVE BEEN SHOWN
TO DO MUCH BETTER

RESEARCH

“

helloworld.cc 21

look like we’re taking the problem-solving out
for the students, but it’s important that they
have the opportunity to understand problem
structures and commit them to long-
term memory if they are to be really
successful at solving problems as a
result of your teaching.

Think carefully about how much new
information your students have to hold in
working memory at any one time, and hone
in on the individual concepts that you really
want them to learn and focus your teaching
on, transferring those to long-term memory.
Traditional, worked examples are one proven
way to help this to happen.

For more, see Chapter 16 of Hattie and
Yates’s ‘Visible Learning and the Science of
How We Learn’ or dig deeper into Sweller
& Cooper’s paper on worked examples in
Algebra at helloworld.cc/2iH2kti (content
is behind a pay wall).

BLOCKS TO TEXT:
COMPUTATIONAL THINKING TO PEDAGOGICAL THINKING

 regular area for debate amongst
teachers of programming is how

to best support the transition from visual
programming to text-based languages. Visual
languages and environments such as Scratch
are a hugely powerful tool for introducing
students to the concepts of programming,
allowing them to explore concepts, solve
problems, and create products through
programming. However, it’s important to
get the experience of working in text-based
languages, both to cover the curriculum and to
develop the skills for the next stage.

Dorling and White explore this transition
in their paper ‘Scratch: A Way to Logo and
Python’, and their research has suggested that
we might want to think about this ‘transition’
in a different way. They explored approaches
including unplugged, visual, and textual
programming, and the ways students engaged
with problem-solving in these contexts. They
discovered that it was valuable to think about
these different media as pedagogical tools, with
different strengths for teaching and learning,
rather than stages students had to progress to
and leave the others behind.

The power and variety of text-based
programming gives prevalence to this form, but
in terms of teaching it’s the various concepts and
skills that we’re trying to lead students through
in the best way possible. This research shows
that problem-solving can start in the realm of
‘unplugged approaches’ where the nature of
problems can be explored, students move into
visual languages as a form of pseudocode, and
then to text-based programming to develop

a deployable solution. The transition here is
more about the pedagogy and the learning
than moving from one type of tool to another.
These studies provide a way of looking at this
issue that will be new to many people, and they
suggest a different way of approaching it with
your students.

For more, see Dorling and White’s paper
‘Scratch: A way to Logo and Python’ at
helloworld.cc/2iHfsyx.

A

http://helloworld.cc/2iH2kti
http://helloworld.cc/2iHfsyx

helloworld.cc22

ow often have we wanted to go travelling? We
know the benefits of a real-life experience to
engage learning; it’s why visits and trips are

so valued. But there’s financial limitations to organising
them. Google Expeditions lets you be temporary explorers.
We tried out the Google Expeditions Pioneer Program
(helloworld.cc/2jrjjBy).

Despite having little time to prepare or understand what it
involved, top marks go to the teaching staff who went with
the technological flow to see where it would take them.

Ease of use
We went from Rome to London, from the oceans to Mount
Rushmore, and to space. What makes the experience
manageable is that it’s controlled by one person. You become
the tour guide: children can freely explore or have items of
interest pointed out. The Control Tablet pauses the journey,
allowing the children to return to the real world. The staff
received a brief training session, yet managed the equipment
comfortably. All children could take part, even revisiting
areas to ensure nothing was missed; all adults noted the
impact of this. The follow-up work was of a high standard,
particularly for those whose life experiences are rarely beyond
their neighbourhood.

As expected, this generation of ‘digital natives’ were at ease
with the equipment, even if most hadn’t seen or used a VR
headset before.

It’s not just about the coding
We’re now a ‘Google School’ using only cloud storage, with
raised expectations of computing. Adults can now reflect on
the breadth of the English computing curriculum; it’s not just

about coding. Not bad, considering many primary/secondary
colleagues are ‘digital immigrants’. Even new teachers don’t
always feel confident delivering many aspects of computing.

Keeping it simple is important
Our journey towards a functioning network with working
devices is recent, yet we stay true to our ‘unplugged’ roots.
Younger pupils begin by making algorithms with each other,
first as human robots, then with Bee-Bots. Next, they debug
other groups’ programming while using Read Write Inc for
technical vocabulary. There’s many excellent resources from
Barefoot (barefootcas.org.uk) and Phil Bagge (code-it.co.uk),
to be used or adapted for unplugged teaching. Maintaining
this approach has worked well, helping pupils’ understanding
of programming principles rather than being language-
specific. It’s also supported teachers’ own development.

OPINION

H

How using VR headsets to support learning helped teachers to become more
confident with the range of the computing curriculum

Lorna Elkes leads technology for learning and has
a keen interest in how it can engage pupils across

the curriculum.

THE WORLD IN A BOX
LORNA ELKES DEPUTY HEADTEACHER

THE HEADSET
The cardboard Google VR
headset was sturdy, and able to
accommodate a range of devices
with simple fastenings. No straps
meant no fussing. It also meant they
were quick to dive into or share. The Google Expeditions can also
be followed via a tablet for children unable to access the headsets.

http://www.helloworld.cc
http://helloworld.cc/2jrjjBy

helloworld.cc 23

ne of the simplest methods to create secret
messages is undoubtedly the Caesar Cipher. As
you might expect, it’s named after Julius Caesar,

who used it in his correspondence. To encipher a message,
we choose a whole number and shift every letter down the
alphabet by that number of places. For example, if we choose
6 then A becomes G, M becomes S, and Y becomes E; after Z
we start at A again. To decipher the message, we just shift the
letters back again.

Modular arithmetic and ASCII codes
To code this in Python, we’ll use remainders. If we number
the letters from 0 to 25 (always count from 0 in Computer
Science!), then we just add the shift factor. If we then take
the remainder after dividing by 26, 26 becomes 0, 27
becomes 1 and so on, meaning that A comes after Z.

In Python we can turn a letter into a number using

the ord() function, which produces the ASCII code
corresponding to a letter. Unfortunately, it doesn’t give
a number between 0 and 25. Upper-case letters are
between 65 and 90, while lower case letters are between
97 and 122. The other numbers are for punctuation, control
characters, and so on. To deal with this, we can employ a
nice trick called conjugation. We move our numbers back
to start at zero, perform the shift, then move forward again.
Finally, we convert back to a letter using chr().

See the box for a short Python program to accomplish this.

Working with files
Those who know a little more Python might like to adapt
this to take input from a text file and output to another
text file. This lets you encipher a whole letter or even
a book in a single pass. I like to set this challenge at
Christmas and give my students a copy of Dickens’ “A
Christmas Carol” from Project Gutenberg (gutenberg.org).
This website has text files of many classic out of copyright
books, in several languages.

Cracking the code
This method of creating secret messages is not very
secure. Short messages can be deciphered by just applying
all 25 possible shifts and reading the output; longer ones
can be attacked by a method known as frequency analysis.
We look for the most common letter in the message and
assume this must correspond to the most common letter in
the English language, e. This gives us the shift and we can
now read the message.

Next issue, we’ll look at how to perform frequency
analysis on a file.

O

The Caesar Cipher is one of the simplest, and oldest, systems for cryptography.
Let’s see how it can be implemented very simply in Python…

CODING THE CAESAR CIPHER
MARK THORNBER TEACHER

Python code to implement a Caesar Cipher

plainText = input("Enter your text:\n")
shift = int(input("Enter how many places
 to shift:\n"))
cipherText = ""
for char in plainText:
 pos = ord(char)
 if 48<= pos<= 57:
 newpos = (pos-48+shift)%10+48
 elif 65<=pos<= 90:
 newpos = (pos-65+shift)%26+65
 elif 97<=pos<=122:
 newpos = (pos-97+shift)%26+97
 else:
 newpos = pos
 cipherText += chr(newpos)
print("Coded Message:")
print(cipherText)

Mark Thornber has been a maths teacher at Durham
Johnston for the last 25 years. Mark has been interested in the
mathematical parts of computing since owning his first ZX81.

OPINION

http://www.helloworld.cc

FEATURE

PAPERT’S

helloworld.cc24

eymour Papert died in July 2016, leaving
behind a legacy of profound impact on so
many aspects of education. He provided

much of a generation with their first experience of
computer programming through the Logo language,
particularly its pioneering implementation of turtle
graphics. He also developed many of the ideas that lie
at the foundation of computing education and digital
making. He was the first to coin the term ‘computational
thinking’; he recognised that there was little point to
teaching children to program as an end in itself, but
that through their learning to program they would start
looking at problems, other subjects, and the world quite
differently. He moved beyond Piaget’s view of learning
as through experience to the theory of ‘Constructionism.
He foresaw the impact that providing children with

access to the world’s knowledge would have for the
nature of schooling; and finally, he was an advocate for
equitable access to cheap digital technology for all.

So much of what we’re learning about good practice
in computing education was figured out by Seymour
Papert 30 or 40 years ago. Papert was one of the first
to recognise that a young person could make things in
their mind through making things in the world.

Here, four contemporary educators look back on
Papert’s work, and draw out some of the lessons
we can learn from this today. We begin with Dr.
Gary Stager, veteran teacher, educator, speaker, and
colleague of Papert for twenty years. Gary curates the
Papert archive at dailypapert.com and is co-author
of the highly recommended Invent To Learn – Making,
Tinkering, and Engineering in the Classroom.

S

Co-creator of Logo, pioneer of programming in schools, and godfather
of the maker movement. Seymour Papert has had an immense impact

on digital making, mathematics, and CS education

http://www.helloworld.cc

P
apert was not only a recognised mathematician,
artificial intelligence pioneer, and computer
scientist; he was also the father of educational

computing and the maker movement.
By the late 1960s, Papert was advocating for every child

to have their own computer. At a time when few people
had ever seen a computer, Papert believed that children
should program them. They should be in charge of the
system; learning while programming and debugging. He
posed a fundamental question still relevant today: “Does
the child program the computer, or does the computer
program the child?” Along with colleagues, Papert created
Logo, the first programming language designed specifically
for children and learning. Logo dialects, like Scratch and
Snap!, are still in use fifty years later.

Papert’s legacy extends beyond children programming.
In 1968, Alan Kay was so impressed by children’s work
in Logo he sketched the Dynabook, the prototype for the
modern personal computer, on his flight home. LEGO’s
line of robotics gear is named after Papert’s seminal
book, Mindstorms. In 1993, Papert conjured up images of
a knowledge machine that children could use to answer
their questions.

Making things and making meaning
As students expressed formal mathematical ideas of how
they wanted the robotic Logo turtle to move about in
space, it would drag a pen (or lift it up) and move about
in space as a surrogate for the child’s body; they were
learning not only powerful ideas from computer science,
but constructing mathematical knowledge by “teaching”
the turtle. From the beginning, Papert’s vision included
physical computing and using the computer to make
things that lived on the screen and in the
real world. This vision is clear in a paper
Cynthia Solomon and Seymour Papert co-
authored in 1970-71, “Twenty Things to
Do with a Computer.” (see box). This made
the case for the maker movement more
than forty-five years ago.

Computing for all
Social justice and equity was a
current running through all of Papert’s
activities. If children were to engage
with powerful ideas and construct

PAPERT
FATHER OF THE MAKER MOVEMENT

Written by: Gary S Stager, Ph.D.

“In our image of a school
computation laboratory, an
important role is played by
numerous “controller ports”
which allow any student to plug
any device into the computer...
The laboratory will have a supply
of motors, solenoids, relays,
sense devices of various kids, etc. Using them, the students will be able
to invent and build an endless variety of cybernetic systems.” (Papert
and Solomon, 1971)

20 THINGS TO DO WITH A COMPUTER

knowledge, then they would require agency over the
learning process and ownership of the technology used
to construct knowledge.

“...Only inertia and prejudice, not economics or lack of
good educational ideas, stand in the way of providing
every child in the world with the kinds of experience of
which we have tried to give you some glimpses”

(Papert and Solomon, 1971)

One laptop per child
It frustrated Papert that kids couldn’t build their own
computers. In 1995, Papert caused a commotion in a
US Congressional hearing on the future of education,
when an infuriated venture capitalist scolded him
while saying that it was irresponsible to assert that
computers could cost $100, have a lifespan of a
decade, and be maintained by children themselves
(http://helloworld.cc/2jr6do7). Later, Papert would

be fond of demonstrating how any
child anywhere in the world could
repair the $100 OLPC laptop with a
single screwdriver. The Raspberry
Pi finally offers children a low-cost

programmable computer
that they may build,
maintain, expand, and use
to control cyberspace and
the world around them.

The One Laptop Per Child XO-1 – one of
the many projects inspired by Papert. t

helloworld.cc 25

http://www.helloworld.cc

eymour Papert has served as inspiration for
every educational technology project I’ve worked
on: LEGO Mindstorms, Computer Clubhouses,

Scratch, and more. Seymour was a true visionary,
recognising possibilities and opportunities decades before
others. The projects and ideas that he developed, starting
in the 1960s, laid the intellectual foundation for today’s
maker movement and Learn to Code movement. I think
it’s fair to consider Seymour as the patron saint of making
and coding.

Looking beyond technology
To understand Seymour’s contribution, it’s important to look
beyond the technology. Seymour is probably best known
for his Logo programming language, the first programming
language for children. But what’s more important are the
ideas underlying Logo. Seymour’s Constructionist theory
of learning provided a new vision of how children learn,
and how we can support their learning. Seymour argued
that children learn best when they are actively engaged in
making things and expressing themselves.

Seymour’s Constructionist theory has guided our work
on Scratch. On the MIT Scratch Team, we sometimes talk
about our approach in terms of the “Four P’s of Creative
Learning,” all of which build on Seymour’s ideas.

THE PATRON SAINT OF
MAKING AND CODING

To support children’s learning, we must give them opportunities to design, create,
experiment, and explore. Logo, Scratch, and the maker movement do just that.

Written by: Mitchel Resnick, Professor of Learning Research, MIT Media Lab

S

helloworld.cc26

FEATURE

http://www.helloworld.cc

Four P’s of Creative Learning
Projects. Seymour worried that schools too often
introduce students to a disconnected set of concepts
and skills. Instead, Seymour advocated a project-based
approach to learning, in which students learn concepts
and skills in the context of meaningful projects. Rather
than introducing coding through a series of puzzles,
Scratch supports children in turning their ideas into
games, stories, and other projects.

Passion. People often think that children want things
to be easy. Seymour knew otherwise. He recognised
that children are willing to work hard, and tackle
difficult problems, when they were working on projects
connected to their interests. He called this “hard fun.”
In Scratch, we support many different types of projects,
since we know that children have many different
interests. We view the incredible diversity of projects on
the Scratch website as a sign of success.

Peers. Seymour was inspired by the samba schools in
Brazil, where people come together to create music
and dance routines for the annual carnival festival.
We see Scratch as a type of online samba school. We
created the Scratch online community at the same
time as creating the programming language, since we
recognised the importance of children learning with and
from one another.

Play. Seymour embraced a playful approach to learning,
encouraging learners to try new things, experiment,
take risks, and learn from failures. We designed Scratch
to support playful tinkering. It’s easy for children to
snap together programming blocks, take them apart,
and playfully experiment with new possibilities.

Putting ideas into practice
It’s not always easy to put Seymour’s ideas into practice,
but it’s worth the effort. I will be happy and proud to
spend the rest of my life trying to turn Seymour’s visions
into reality, and I hope others will too.

A Scratch project honouring Seymour Papert, created by Scratch community member eduardm.
See the full project at helloworld.cc/2jrdCUu t

helloworld.cc 27

Seymour is probably
best known for his Logo
programming language, the
first programming language
for children

A few years ago, I gave a
conference presentation
about the Scratch
programming language,
discussing what children
learn as they create and
share projects in Scratch.

After my presentation, in
the Q&A session, someone
stood up and asked: “Wasn’t
Seymour Papert trying to do these same things 20 years ago?” The
comment was meant as a critique; I took it as a compliment.
I answered simply: “Yes.”

PAPERT AND SCRATCH

http://helloworld.cc/2jrdCUu
http://www.helloworld.cc

FEATURE

COMPUTATIONAL THINKING AND LOGO:
ANOTHER PERSPECTIVE

Papert’s Logo was great at the time, but it’s not without problems: microworlds are
limiting, it doesn’t support types well, and it can encourage tinkering rather than thinking

Written by: Greg Michaelson

he Logo language embodies Seymour Papert’s
Constructivist notions of a microworld as a locus
for explorative learning. Thus, at its simplest,

Logo is based on sequences of commands to control a
turtle, which leaves a trace as it moves around a plane.

Papert was a visionary of inclusive computer use:
beginners find Logo’s turtle microworld engaging and
motivating. We can see Logo’s spirit in contemporary
graphical languages which enhance what is essentially the
turtle microworld with avatars, colour, and sound.

The limits of microworlds
Alas, I think that the wider Logo language, like many
graphical languages, is a poor fit for contemporary
ideas of computational thinking. Manipulating a given
microworld through coding - that is, assembling programs
from pre-made commands - is certainly an excellent
starting point for beginners. But, quite quickly, we want
them to start building their own microworlds through
problem-solving and programming. These are part of
manipulating a pre-made microworld, but the problems
are bound by the entities and operations that the
microworld offers. Once we try to go beyond turtles, Logo
is really quite impoverished.

Papert thought children should acquire the capacity
to “think like a computer”; that is, to follow step-by-step
procedures, and to construct programs in a microworld
by themselves, first acting out appropriate sequences
of commands. Hence, the core Logo design is strongly
procedural, with poor support for thinking about
information structures

Logo and Lisp
Furthermore, Logo is very much a creature of its time and
place. Much of Logo feels as if Lisp, its MIT stablemate, has
been bolted onto the turtle world. Lisp is a perfectly decent
language once you’ve got your head round its eccentricities,
but I think it’s a poor choice as a teaching language. In
particular, Lisp has an unsatisfactory notion of type, which

Logo inherits; this makes it hard to progress from microworld
assemblages to crafting one’s own new microworlds.

Lisp’s basic entities are atoms, conflating numbers,
strings, and identifiers. These are directly reflected in
Logo’s words, which must subsequently be disambiguated
by different sorts of quoting and use contexts. And, what’s
worse, Logo inherits Lisp’s one-size-fits-all lists, with a
confusing vocabulary of operations.

Bricolage and hacking
Papert was keen on a “bricolage” style of problem-
solving, driven by exploratory changes to a poor
solution to try to find a better one, so Logo’s weak
types may have been a virtue for his pedagogy. But, as
programs grow, this approach can lead to misguided
hacking, which can prove frustrating and demotivating
for impatient beginners. Rather, we would like learners
to make hypotheses about how their programs should
behave, and reason about why they don’t.

Latterly, Papert himself recognised this tension.
In the preface to the 2nd edition of Mindstorms, he
expressed concern that he might have unintentionally
encouraged a classroom focus on “structured
programming”, at the expense of his wider pedagogy
of “thinking about thinking”.

T
to ffind :v :l
 if empty? :l [output "fail]
 if :v = first :l [output 1]
 output 1+ffind :v (butfirst :l)
end

Logo, like Lisp, is weakly typed, so beginners don’t start with the concept
of how operations and values may be combined. Weak typing places a
strong onus on run-time testing. For example, the code here returns a
number or a string, depending on whether the item is in the list or not.

LOGO AND TYPES

helloworld.cc28

http://www.helloworld.cc

TODAY’S CHILDREN’S MACHINE
For many children and young people, the use of technologies is integral to their

experience and understanding of family and social life, and to learning.

Written by: Josie Fraser

ithin developed countries, technologies are
now a part of the everyday life of most people.
Making a clear distinction between real world and

virtual activities is increasingly irrelevant. While different
environments offer different affordances, digital and
physical spaces typically coexist.

The sum of all human knowledge?
When asked about Wikipedia, Jimmy Wales famously said,
“Imagine a world in which every single person on the planet
is given free access to the sum of all human knowledge.
That’s what we are doing.” As one of the most visited
sites in the world, Wikipedia, along with Google, YouTube,
and Facebook, provide internet users with unprecedented
access to information, and have changed how we learn.

In an age where young people can access, if not the sum
of all human knowledge, then more information than has
been available to people at any point in history, the urgent
question becomes “how can we equip them to make the
most of it?” How are we responding to the mainstreaming
of web and mobile technologies within education?

Digital literacy
Digital literacy is not just about technical ability. The
definition I most frequently use is digital literacy =
functional technical skills + critical thinking + social

W

engagement. It’s about critically and creatively engaging
with online content and communities. Understanding
bias, evaluating information, and checking facts become
critical in a world where children and young people are
not dependent on schools, parents, or carers for accessing
or verifying knowledge. We need to ensure young people
are developing the ability to navigate critically, review the
content they come into contact with, find the content they
need, and make use of what’s available to them.

Creativity, identity, community
The increasing opportunities for young people to
engage creatively with computing and coding are very
welcome, along with the availability of affordable devices,
connectivity, and low-cost computers like the Raspberry Pi.
There’s still more to do in relation to how we understand
and champion young people’s creativity online. There’s no
doubt that their activity online - creating, collaborating,
and sharing - are creative acts. Importantly, young people
are developing their identities online, and finding their
voice and their place in the world. They create and recreate
themselves: their tastes, views, values, and passions.
By recognising the wide range of creative and social
practices young people take part in every day online, and
understanding the role of technical skills and awareness,
we can perhaps start to see how we can help their habits
positively contribute to both their own development, and to
their physical and digital communities.

Children and young people are still not routinely supported in developing
the critical competencies they need to navigate their world. Some
countries have begun to support learner digital literacy at national level,
and some have started to recognise the need to enable school staff to
develop the skills and confidence necessary to support learners.

THE ROLE OF SCHOOL

This launch edition of Hello World includes more content inspired by Papert’s work:
Oliver Quinlan gives his own views on why Logo apparently failed to change the
nature of education, and Prof Michael Kölling, Phil Bagge, and John Stout share
ways in which Greenfoot, Scratch, and Snap! have built on Logo’s heritage.

Children’s machines today. How should we develop young people’s criticality alongside their
skills as users of technology? t

helloworld.cc 29

http://www.helloworld.cc

helloworld.cc30

SUBSCRIBE
Sign up today for a year - prices start at FREE!

 Get all 3 of 2017’s
term-time issues

 Have it delivered
directly to your door

 Hello World is not
available in stores!

Subscribe Today

http://www.helloworld.cc

helloworld.cc 31

RETURN THIS FORM TO: Hello World Subscriptions, Select Publisher Services Ltd, PO Box 6337, Bournemouth BH1 9EH. We’ll be in touch!

 Please tick this box if you DO NOT want to subscribe to the Raspberry Pi Foundation Education newsletter (no spam).

YOUR DETAILS Mr Mrs Miss Ms

First name Surname ...

Address ...

..

Postcode .. Email ..

Daytime phone Mobile ...

Are you a UK-based educator? Yes No

GIFT RECIPIENT’S DETAILS ONLY Mr Mrs Miss Ms

First name Surname ...

Address ...

..

..

Postcode .. Email ..

Is the recipient a UK-based educator? Yes No

SUBSCRIPTION FORM
YES, I’d like to subscribe to Hello World magazine!

HW#1

HOW TO SUBSCRIBE
 Visit us online:

 helloworld.cc/sub1year

This subscription is: For me A gift for someone

If you’re giving Hello World as a gift, please complete both your own details (left) and the recipient’s (right).

Your Hello World subscription will start from the first issue, unless you specify the issue number here: ..

 Call our subscriptions hotline:
 +44(0)1202 586848

Not a UK-based educator?
 Buy any issue for £6

Visit: helloworld.cc/buyissue
 Subscribe from £15 for 3 issues

Visit: helloworld.cc/sub1year

http://www.helloworld.cc
http://www. helloworld.cc/sub1year
http://www.helloworld.cc/buyissue
http://www.helloworld.cc/sub1year

helloworld.cc32

Modern programming environment, Greenfoot, is strongly influenced by Papert’s constructionism.
Michael Kölling discusses some underlying principles, and how you can use them in your teaching…

GREENFOOT AND WHAT
PAPERT’S TURTLES TAUGHT US

eymour Papert, one of the early
and most influential pioneers

in computing education, died a few
months ago on 31 July 2016. His work
continues to influence computer science
teaching, including the design of our own
system, Greenfoot. Papert’s influence on
computer science education is profound
and varied, most notably centring around
constructionism, his theory of learning. In
this article, however, I want to concentrate
on one specific concrete contribution: his
development of turtle graphics.

Many of you, if you’re my age, will fondly
remember Logo’s turtle graphics, one of
the earliest and most successful software
systems developed specifically for the
learning of programming. And even if you’re
too young to have lived through the popular
time of the turtles, you’re likely to have
heard the name mentioned.

Turtle graphics became so well-known
because it embodied principles that are
fundamental and timeless, that changed
the way in which beginners could learn
the underlying concepts of programming.

STORY BY Michael Kölling

NEWS FEATURE

S And even though the original Logo
implementations of turtle graphics are
dated now, these principles remain, and are
still highly relevant.

For us as computing teachers today, it’s
interesting to identify what these principles
are, and how we can still make use of them
in modern programming systems.

A short history of turtles
The history of turtle graphics is very
closely tied to the Logo programming
language, developed in 1967 by Seymour

http://www.helloworld.cc

helloworld.cc 33

Papert and others. Papert added turtle
graphics to Logo in the late 1960s, and
although Logo was a general-purpose
programming language, the turtles
are perhaps its most enduring legacy.
Although we know the turtles today as a
software simulation in a graphical micro-
world, the first turtles were in fact real
robots, rather chunky in today’s terms
(Figure ?); they moved along the floor
with a pen attached, leaving lines behind
wherever they went. By programming the
movement of these robots, users could
produce drawings on the floor.

The physical “turtles” were soon
accompanied by simulated ones that did a
similar thing on a graphical display: drawing
lines in reaction to movement instructions.
Using a combination of move, turn, and
repeat commands, surprisingly intricate
pictures could be created.

After Papert described his ideas in
his classic book Mindstorms: Children,
Computers, and Powerful Ideas, turtle
graphics was re-implemented for a number
of other programming languages; today, we
can find implementations for almost every
language we choose to use.

The big ideas
So what was so different about turtle
graphics that made it so successful?

The basic idea of turtle graphics was
that the programmer programs a turtle to
move on the screen (or paper), using move
and turn commands, leaving visible traces
behind. By combining these commands
with generic programming concepts, such
as conditionals, repetition, parameterisation,

and subroutines, programming
fundamentals and general problem-solving
could be learnt. Papert later coined the term
“body-syntonic reasoning” for this kind of
thinking: learners could imagine themselves
in the position of the turtle, playing
through their program as a first-person
simulation. They could debug their program
by stepping forward and turning just as
they imagined the turtle to do, turning the

TAKING PROGRAMMING AWAY FROM PURE
MATHEMATICS AND NUMBERS, TURNING
IT INTO A VISUAL AND VISIBLE ACTIVITY

“

execution of a program into a kinaesthetic
exercise. These are powerful ideas, and it’s
hard to understand today how revolutionary
this was at the time.

Turtle graphics was a pioneer in taking
programming away from pure mathematics
and numbers, turning it into a visual
and visible activity. Reasoning about
a program, until then highly abstract
and formal, became concrete. Perhaps

most importantly, users could suddenly
see a program execute. While most
programs at the time took some input
and then produced some output, the
process between these two remained
hidden and inaccessible. With turtle
graphics, you could suddenly watch
your program producing its output.

n A turtle graphics scenario, implemented in Greenfoot.

http://www.helloworld.cc

helloworld.cc34

NEWS FEATURE

Debugging became partly implicit. Instead
of requiring organised testing, it was
often the surprised reaction of “Why did
it do that now?” that pointed to a bug
in the program.

This visual quality was combined with
interesting tasks (the images it produced
were often intriguing) and a limited

problem domain. Both of these aspects
help to keep learners engaged and feel
safe and in control.

A last aspect that I personally always
found very important was that it was
carefully designed to teach composition
as well as use of commands. By providing,
for example, a turnLeft command but no
turnRight, users were prompted to build
such a command themselves (by defining
a procedure). Thus, it was made clear from
very early on that, as programmers, we
are not only users of language, but also
creators of language.

Papert’s ideas in modern systems
With the advent of modern graphics and
video games, our turtles have perhaps lost
some of their engagement and fascination
qualities for the younger generation.
Papert’s ideas, however, are as relevant
as ever. Luckily, there are a number of
modern educational programming systems
available that build directly on these
principles, and package the same qualities
into environments that provide more
modern functionality.

The best-known of these are perhaps
Scratch and its later variant Snap!
These environments provide micro-
worlds that not only exhibit the same
qualities discussed above – visualisation,
engagement, and extendibility – but also
provide support for experimentation and
discoverability that hugely surpass original
turtle graphics systems.

In this article, however, I will discuss one
system in particular that owes much of its
design to the same principles: Greenfoot
(www.greenfoot.org), a modern micro-
world framework.

Greenfoot
Greenfoot is an educational programming
environment designed to achieve the
same goals that Papert formulated 45
years ago. Programs developed in it
are highly visual, usually constructed

around visible movement of actors
on screen, allowing engaging examples
and visualisation of program execution.
It uses a general-purpose programming
language (Java or Stride), provides
a well-defined problem domain,
and is extendable.

Turtle graphics, for example, can easily
be programmed in Greenfoot (Figure
2). A teacher could provide a functional
turtle, and learners could go through
the same activities that Papert’s pupils
went through. However, Greenfoot also
provides additional functionality that

goes far beyond traditional turtle libraries.
Some of the most relevant aspects
are as follows:

n Greenfoot provides an integrated
environment, including the editor,
compiler, and runtime system. This
greatly aids in program development and
debugging. It de-emphasises the tools
(editor, compiler, etc.) and lets users
concentrate on the task.

n Greenfoot is fully object-oriented.
This not only teaches a more modern
programming style than older turtle
graphics implementations, but also
allows for the creation and simultaneous
execution of multiple turtles (or other
actors), allowing development of much
more interesting examples.

n Greenfoot provides interaction facilities
that allow direct interaction with
individual objects, providing more
fine-grained experimentation than
older systems.

n The editor in the Greenfoot system
provides modern support for program
development, such as inline help, code
completion, and edit-time error checking,
thus combining Papert’s ideas with
modern advances in tool development.

But most importantly, Greenfoot is
not a micro-world, as turtle graphics
is, but technically a micro-world meta-
framework. This means that it’s a system
in which countless micro-worlds can
easily be created. Turtle graphics-like
systems are just one example, but just
as easily we can write traffic simulations,
video games, predator-prey simulations,
board games, card games, chat clients,
or any number of other examples (Figure
3). Greenfoot takes Papert’s lessons and
generalises them to a whole class of
applications: anything we can think of
that produces two-dimensional graphical
output as its result.

THIS VISUAL QUALITY WAS COMBINED
WITH INTERESTING TASKS (THE IMAGES
IT PRODUCED WERE OFTEN INTRIGUING)

“

n Seymour Papert with one of his turtles: robots that moved
and created drawings with an attached pen

http://www.helloworld.cc
http://www.greenfoot.org

helloworld.cc 35

Teaching with Greenfoot
If you’re not familiar with Greenfoot, you
can easily find examples and material
online. Once you start to look around,
you will quickly see the wide variety of
examples that can be created.

Good starting points are a series of
video lessons titled “The Joy of Code”
(blogs.kent.ac.uk/mik/joy-of-code-
table-of-contents/) and the Greenroom
(greenroom.greenfoot.org), a community
of teachers interested in Greenfoot.
In the Greenroom, you can find lesson
plans, schemes of work, projects, slides,
and much more. But most importantly,
you can talk to other teachers and the
designers of Greenfoot to get help,
discuss ideas, and share your own
material. A large amount of material,
as well as the software itself, is freely
available to teachers and learners.

Stride
One specifically interesting aspect of
Greenfoot is Stride. While Greenfoot can
be programmed in standard Java, programs
can also be written in the more recently
published language Stride. Stride provides
a stepping stone between block-based
languages such as Scratch and traditional
text-based systems. As such, it may
provide an ideal system to facilitate the
transition between the two.

In summary
Users of Greenfoot don’t usually think of
the system in terms of turtle graphics;
visually it seems far removed, and in
functionality it has progressed a long way
since Logo was designed. Educationally,
though, the legacy is clear. Constructivism
underpins the design of Greenfoot, just
as it has shaped the design of turtle

graphics, and the pedagogical benefits
transfer directly. This powerfully illustrates
the fundamental nature of Papert’s ideas
and the lasting influence he continues to
have on our teaching. Using Greenfoot or
similar systems, you can combine modern
technology with powerful pedagogy.

A full discussion of Stride is outside
the scope of this article; I will leave that
for another day. However, if you are
curious, you can find information online
http://blogs.kent.ac.uk/mik/stride/.

A more detailed history of the
development of Greenfoot and its
sister system, BlueJ, is available in the
article Lessons From The Design of Three
Educational Programming Environments:
Blue, BlueJ, And Greenfoot, available from
https://kar.kent.ac.uk/56662/

FURTHER READING

http://www.helloworld.cc
blogs.kent.ac.uk/mik/joy-of-code-table-of-contents/
blogs.kent.ac.uk/mik/joy-of-code-table-of-contents/
http://greenroom.greenfoot.org
http://blogs.kent.ac.uk/mik/stride/
https://kar.kent.ac.uk/56662/

helloworld.cc36

Who is studying computer science at English schools? The data paints a worrying picture…

IS COMPUTING EDUCATION
IN ENGLAND BECOMING

MORE EXCLUSIVE?
014 saw the introduction of a new
Computing curriculum in England,

followed by new computer science
qualifications for 16- and 18-year-olds
and a deadline for the phasing out of
the old ICT qualifications. We welcomed
the change in the curriculum, but would
the new computer science qualification
confound expectations and have girls
taking it in similar numbers to the old
ICT? Would we have schools in poorer
communities offering it? Or is computer
science a socially exclusive subject?

Many teachers report stories of students
from tough backgrounds finding well-
paid jobs in the tech industry, based on

a recognition of their skill rather than the
name of their school or the wealth of
their parents. On the face of it, computing
is a meritocratic profession; no one
should care about who is writing the code
as long as it’s well written. It shouldn’t
really matter what sex you are, or the
colour of your skin, or whether you have
a disability. Sadly, the reality of the tech
industry is the dominance of white middle-
class men (and some studies even suggest
that it helps to have a beard). One question
that needs to be answered is whether
this disparity in the industry is being
established much earlier, in pre-university
computing education.

The Roehampton annual
computing education report
Using government data on student
results for the 2015 exam year, we looked
into the schools and students taking
computer science and ICT qualifications.
Whilst concerns about the low uptake in
computing qualifications amongst female
students are well-known, very little is
known about other social factors. The
2015 Roehampton annual computing
education report (helloworld.cc/2jmYuY4)
looked into some of these factors. We
found the numbers of students taking
GCSE and A-level computer science
have been increasing steadily over the
last few years. However, we also looked

more closely into the data, especially who
these students are. Our findings raise
some concerns.

GCSE and ICT are different
The Roehampton report shows that the
distribution of students who took ICT at
GCSE is roughly representative of the
general population, where 27% of students
receive pupil premium; this was not the
case for computer science, with only
19% of pupil premium students. In terms
of state school provision, grammar schools
were far more likely to offer computing
than non-selective providers (53.1%
vs. 31.7%). We also observed a marked
disparity between regions when looking
at students taking GCSE computing: 6.5%
of students in the South East compared to
only 4.2% in the North East. Urban schools
were also more likely to offer computing
at GCSE or A level than those in rural
locations (29.5% vs. 22.7% and 25.1% vs.
18.1% respectively).

Striking results were also obtained when
looking at the ethnicity of the students
taking computer science. Asian and
Chinese students were over-represented
in the population of students taking GCSE
computing; in contrast, black students
were substantially under-represented.
This mirrors the patterns observed in the
American education system and the reality
of the tech industry itself.

STORY BY Peter Kemp and Billy Wong

FEATURE

2

A lot of work has been done to promote
female role models in technology, but where
are the working-class and ethnic minority
role models?

A question you might like to ask your
students is “what do Ada Lovelace, Grace
Hopper, Bill Gates, Mark Zuckerberg, and Alan
Turing have in common?” An obvious answer
might be that they all speak English and are
white, but another would be that they were all
privately educated.

CLASS ACTION
IN EDUCATION

http://www.helloworld.cc
http://helloworld.cc/2jmYuY4

helloworld.cc 37

30%

28%

26%

6.5%

5.5%

4.5%

6.0%

5.0%

GCSE COMPUTING REGIONAL HEAT MAP:

BY REGIONAL SCHOOL BY REGIONAL STUDENTS

Gender and computing
When looking into gender issues,
we found that over 40% of students
taking GCSE ICT were female, but for
the new computer science qualification

this number was below 20%. Looking
into the gender characteristics of a school,
maybe unsurprisingly, all-girl schools
were less likely to provide computer
science than all-boy and mixed schools.
More worryingly, in mixed schools, a
quarter of GCSE and nearly two thirds of
A-level computer science providers had
no females in their groups. Interestingly,
amongst the girls who take GCSE
computing, a higher percentage of
them are on pupil premium than boys
in the same circumstances. The picture
is also mixed for ethnicity, when we

combine with gender and social class.
For example, while few black boys,
as a proportion, took GCSE computer
science, the percentage for black girls
is higher than the average. Chinese

students, regardless of social class or
gender, are very well represented in
GCSE and A-level computing in terms
of proportional representation.

Our data suggests that computing
is still a socially exclusive discipline, with
fewer girls and fewer students on pupil
premium forming part of the cohort, and
with some ethnic minority backgrounds
heavily under-represented. We need
to ensure that all students who want
to study computing will be offered the
opportunity to do so, and that they will be
supported in their aspirations.

How teachers can help:
n If you have entry requirements to study

computing, look into how they impact on
different sections of your student cohort.

n Try to promote role models in your
classroom that include female, working-
class, and ethnic minority professionals.

How schools can help:
n GCSE computing should be offered in all

English secondary schools, regardless
of region, gender characteristics,
or admission policy.

WE NEED TO ENSURE THAT ALL STUDENTS
WHO WANT TO STUDY COMPUTING WILL
BE OFFERED THE OPPORTUNITY

“

How does computer science participation
compare with traditional science subjects?
It appears the issues around gender,
socioeconomic background, and race/
ethnicity are also prominent in the physical
sciences, especially physics. Most young
people still imagine the scientist in very
stereotypical ways - a very clever person
in a lab coat, typically a man, maybe with
glasses (or even ‘crazy’ hair), and perhaps
socially awkward. These images are not all
that different to the standard computing or
geeky stereotypes.

PARTICIPATION

http://www.helloworld.cc

helloworld.cc38

Visual effects feature in movies, TV shows, games, and animations. The people who
make VFX are collaborative artists, with a blend of science and art skills.

HOW TO MAKE
A VISUAL EFFECTS ARTIST

Im
ag

e
co

ur
te

sy
 o

f H
ey

da
y

Fi
lm

s a
nd

 F
ra

m
es

to
re

Image courtesy of Heyday Films and Framestore

FEATURE

isual effects (VFX) in movies and
TV have become commonplace,

as digital tools and technologies have
developed in the last 25 years. The
photorealistic quality of VFX is now so
convincing that the dividing line between
live-action and animated movies like
Disney’s Jungle Book has become completely
blurred. Is it a live-action movie because
of the boy actor, or is he a performer in an
animated movie? For the artists making
VFX, the labels are less important than the
creation of stunning visual entertainment
across all genres of film and TV.

Introducing students to VFX
VFX for movies start with a visual idea based
on a narrative. Teachers who are looking to
introduce VFX to their media students can
start by asking students to identify what they
see as an effect in favourite films or scenes.
How do the effects work with the story?
Use show-and-tell reels on the web to help
students dissect how some scenes have
been made (there’s a list of reels and effects
on the www.NextGenskillsacademy.com
website). Once the students can identify
some basic techniques like stop-motion
animation or green-screen, they can try their
hand at making something.

Let’s make a VFX!
Ask your students to pitch ideas for a
VFX-dependent story or animated movie
to each other. Teachers should agree with
students which ideas can be produced.
If students want to make a stop-motion
or CGI animated movie, the genre will
lead you to use certain tools. Check out
stopmotioncentral.com for animation, or
blender.org for CGI. For stories and films
that require live-action filming, read Mark
Sawicki’s ‘Filming the Fantastic’. It contains
lots of professional information, but a little
research and planning can make all the
difference to the finished film! Encourage
your students to work in teams. They

should identify roles that they can each
fulfil. Creating VFX requires a blend of skills
and job roles, not just sitting around in
glorious isolation!

Progression and future careers
Making VFX is a craft, and practice
makes perfect! At the end of each
movie or sequence that your students
make, they will have something for their
portfolios. Employers are less interested
in qualifications and more in seeing what
applicants can do. Encourage students
to identify their best work, replace old
with new, and reflect on how their skills
are developing. Portfolios are important
for students who want to progress to
further creative industry studies, whether
through vocational education or academic
study routes.

Today, the main employers for VFX
skills are film and TV companies, but new
applications for VFX skills are emerging.
Virtual and augmented reality, biomedical,
and architectural visualisations are just
some of the potential career areas that a
mastery of VFX skills can lead to.

V

Phil Attfield VFX and Animation
Partnership Manager at NextGen

Skills Academy

Guardians of the Galaxy relies heavily on
animated characters to tell its story. VFX artists at
Framestore created and animated two of the five
hero characters. Check out the ‘Rocket Reel’ at
helloworld.cc/2jAM6WS to see how the animated
Rocket character was made in a computer, and
the filming reference of how Rocket should look in
each scene.

MAKING VFX LOOK REAL

http://www.helloworld.cc
http://www.NextGenskillsacademy.com
http://www.stopmotioncentral.com
http://www.blender.org
http://helloworld.cc/2jAM6WS

helloworld.cc 39

ow I teach programming doesn’t seem to work for
many pupils. They follow the class, they learn the
skills, and some even choose computer science

for GCSE; they still don’t love it, though. That’s a blind spot
for me: I do, on occasion, code for pleasure. My enthusiasm
can carry the lesson, but the students won’t then go home
and try it.

The coding activities I have been running in class were
based on altering or writing small programs with outcomes
that were quite convergent: asking students to complete
tasks with defined outcomes that teach a concept. Those
that found coding intrinsically interesting were hooked; the
others followed along. With little teaching time, we barely
had the space to be creative with code.

Code fragments
Quest (helloworld.cc/2iD8q11) enables every
student to create a game from their imagination. In the
first lesson, they used point-and-click to create a working
game with several rooms to move between and a number
of objects to look at.

Having invested in the world, they want to enrich it;
programming shows them how. The world already works

and is enhanced by tiny fragments of code. Students can
use and adapt these to accomplish simple things, practising
programming techniques over and over to achieve their
personal goals.

Creativity and constraints
One major difference I’ve noticed is that the restrictions
of text-based adventures mean that students aren’t
overreaching as much with what they want to accomplish.
I suspect we’ve all seen the student that wants to create a
complex game in Scratch and is disheartened that it seems
hard! I’ve had questions along the lines of “how do I make it
so that when they drink the milk they find a message at the
bottom of the jug?” or “how do I make it so they see more
when I turn the light on?”, and so on. These questions lend
themselves to thinking about the abstractions and code
involved in the game: the rooms, objects, verbs, sequence,
selection, and so on.

Enhancing the game through these little scripts means
that everyone ends up with a working game, and that
introducing one new feature doesn’t mean significant
restructuring of the rest of the code. Rather, you are dealing
with smaller problems in isolation and based on already
solid abstractions.

Not the answer you were looking for
This is, of course, not “the answer” to teaching coding
and algorithms, but for me it seems like I’ve found another
piece of the puzzle: writing programs that make sense
to students because they thought them up!

H

Paul Powell is piloting a programming unit using Quest: a text-based adventure game
engine. He argues that creating these games helps develop understanding…

The Wizard’s Castle
My first experience of coding was on an old game called

The Wizard’s Castle. My brother taught me to alter the code
so that the game said “you stepped in a poo” rather than
a puddle. Being about 10 years old, this was fascinating

power. Most of the game was written for me and I altered
bits I understood, heralding a world of possibilities.

INTERACTIVE FICTION
AND THE LOVE OF CODE

PAUL POWELL TEACHER

n A script for picking up a frying pan: if the cooker is on, you scream and then drop
the frying pan

OPINION

http://www.helloworld.cc

helloworld.cc40

How do you know if your students have understood a concept? Ask them questions.

QUANTUM:
TESTS WORTH TEACHING TO

well-posed question makes you
think. It leads to dialogue, exposes

misconceptions, and helps distinguish when
you think you know something from when
you actually understand it.

Suppose you had a ready source of good
questions about computing. You could use
them to check your own understanding. You
could set a quick overnight quiz, which your
students could do on their phones, so that
the next day you’d have an idea of whether
they’d “got it”. If not, their answers might tell
you their misconceptions.

Writing good questions is hard
The trouble is, it’s hard to come up with
good questions. It’s easy to think of ones
that test whether you can remember Python
syntax, but harder to find ones that exercise
computational thinking. But there’s good
news: we only need do it once. A corpus of

well-crafted, free, online questions would be
a useful tool for the computing curriculum,
year after year.

The Quantum project has precisely this
goal. We aim to develop, with your help,
thousands of questions on the computing
curriculum, from primary to A level. We have
2,500 already, and more come every day.

What makes Quantum different?
Quantum is different from other online
platforms. It’s focused on frequent, low-
stakes, formative, diagnostic assessment to
support learning (in contrast to high-stakes
summative assessment).

It’s also school-led and crowdsourced.
Teachers use the questions on the system
and upload their own.

Quantum uses a free online platform,
Diagnostic Questions. Moreover, the
questions will be available online, free,

forever; anonymised data will be available
to researchers.

It’s evidence-driven and research-led. Our
partners include two leading assessment
experts: Tim Oates (Cambridge Assessment)
and Robert Coe (Durham Centre for
Evaluation and Monitoring). CEM aids to
provide quality control for the crowdsourced
questions, by analysing the data from
thousands of students doing thousands of
questions. No one has ever done this before.

The project has two goals; the first is being
immediately useful to computing teachers.
We have a need for high-quality assessment
material; Quantum will produce this quickly.

Secondly, no one has tried to crowdsource
assessment items, and then use data to
evaluate and improve their quality. If we can
make this work, the results will be useful for
all subjects in any country. We aim to change
the world!

A

FEATURE

START

Is toy a car?

Is toy a train?

STOP

Put toy
into box

Put toy
into bucket

NO

NO

YES

YES

Kate collects toys using
this algorithm. She has
a toy in her hand.

Identify the selection
statement that matches
this flowchart.

if

if elseif

if else

if elseif else

A

B

C

D

n Testing if students really understand the difference between selection statements.
What misconceptions would the wrong answers here suggest?

STORY BY Simon Peyton Jones

We need your help, because the network
effect is key. The more people using Quantum,
the more people will think it’s worth writing
questions for it; the more questions there are,
the more attractive it will be to use. So whether
as an author or consumer of high-quality
computing questions, we need you. Start here:
helloworld.cc/2jAJXL3

HOW YOU CAN HELP

http://www.helloworld.cc
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdiagnosticquestions.com%2F&data=01%7C01%7Csimonpj%40microsoft.com%7Cbbf932b5e3824e985d4008d3ee47baf4%7C72f988bf86f141af91ab2d7cd011db47%7C1&sdata=7K%2FTisX8AU1xzDj6L8oPshEFnlsrtkT78MBCddjpdWU%3D&reserved=0
http://helloworld.cc/2jAJXL3

helloworld.cc 41

Iain Davis, Assistant Head and Year 6 teacher, has taken a look at diagnosticquestions.com
and Project Quantum, and predicts a bright new future for assessment.

PROJECT QUANTUM
– A TEACHER’S PERSPECTIVE

omething I hear again and again
from my fellow teachers is ‘there’s

a big problem with assessment in schools’.
From changes in the national curriculum to
high-stakes end-of-year tests, the whole
system is under pressure. Computing isn’t
like reading and maths and so quite often I
feel it can’t be measured by children sitting a
paper. They do enough of that in the run-up
to SATs, and don’t our teachers already have
enough to do?

I was introduced to Project Quantum
in October 2016, so our school is still
at the start of our journey with it. We
had been looking for an effective way
to assess computing for a while, with
mixed success. We wanted something
to help us measure progress and provide
easy assessment of learning. The online
platform diagnosticquestions.com does
this perfectly. It has many questions across
a number of subjects; the current count is
29,284, with 2,340 being computing.

S

STORY BY Iain Davis

Improving teaching and learning
The biggest benefit I’ve found from using
the site is that not only does it give me
a way to measure progress, but it also
shows me quickly where my students are
on their learning journey. I’m then able to
push those that need to be moved onto
working at a greater depth, and also know
who I need to support more. Normally with
computing, it will take a few sessions to
get a good grasp on what it is that pupils
can and can’t do.

Free and easy-to-use
The platform is free to sign up to and on
their site they state that it will be free
forever! No need to set aside precious
budget areas. As is always the way with
new initiatives, there are early adopters and
those that are less keen to embrace change.

A turtle is facing right.

What shape will the following sequence
of Python instructions draw?

forward (100)
right (90)
forward (100)
right (90)
forward (100)
right (90)
forward (100)
right (45)
forward (70)
right (90)
forward (70)

A. B.

C. D.

When I introduce something new to staff, I
always approach one of our teachers who is
less confident with technology. If they can
manage it, the rest should too, right? After a
quick 10-minute demo with a less confident KS2
teacher, she took to it like a duck to water.

INTRODUCING
THE CONCEPT

The children have taken great enjoyment
from it, as they get instant feedback and
they see it as a low stakes/low threat piece
of assessment, unlike certain booklets
that we give many children in the month
of May. At present, I’m trying to come up
with an end-of-year question bank for each
year group so that we can measure their
progress across the school.

In control
This platform also puts the power into
the teacher’s hands. I choose what I will
assess, and, in turn, that reflects what I will
teach and what my children need to learn.
What I love about it is that it is easy-to-
use, quick to set up, and the insights I get
into what my children know is invaluable.
Will this new platform change attitudes to
assessment? I hope so.

n A great way to test (and teach) programming is by getting pupils to work through code in their heads or on paper.
helloworld.cc/2jADjo7

You get an e-mail message saying you have won
a prize in an internet raffle. You should:
A. Be very pleased and tell your friends.
B. Just delete it because it is not true.
C. Contact the sender to check if it is true.
D. Send your home address so that your prize

can be delivered to you.

http://www.helloworld.cc
http://diagnosticquestions.com
http://helloworld.cc/2jADjo7

helloworld.cc42

powerful learning language ahead of its time,
Logo was designed in the late 60s and spread to
classrooms by the 80s. Its reach and familiarity

today shows its success in its goal of fundamentally
changing education systems.

When many think of Logo, it’s the turtle guided by typed
instructions. ‘Turtle graphics’ is so iconic it’s become the
definition of Logo. However, it’s much more than that.

Logo, from the Greek for ‘thought’, was designed as a
tool for children to manipulate ideas in the computer, to
interact in a concrete way with abstract knowledge, like
finding the properties of angles by drawing shapes. To
draw a triangle, a child must experiment with instructions
and work out that the angles must total 180 degrees. But
‘turtle graphics’ was just one feature. It was designed to let
children manipulate language, so that abstract knowledge
in many subjects could be explored with computers.

Powerful ideas
Logo was more than a way of learning programming. It
was a radical educational philosophy; children learned
by exploring complex concepts on their own. Seymour
Papert described its revolutionary potential in books that
questioned the nature of schools and teacher-led lessons.
He wanted to put learning in the hands of children,
empower them to discover ideas themselves, and he
believed that in Logo, this tool was being developed.

Papert wanted to see Logo in every classroom; in the
USA and UK this was successful. Logo descendants
still exist, yet education systems are detached from its

underlying approach to learning. Why is this?
Researchers have explored how Logo was adopted over

many decades. Maybe its success on one level prevented
its success on another. Turtle graphics was so compelling
for teaching geometry and simple programming that it was
taken up just for learning these. Thus, it was hard to shift
perceptions of it to a tool with much deeper implications.

Learning from the legacy
Educators developing the teaching of computing can learn
from this. Turtle graphics was easily understandable and
educators were ready to adopt it, yet this acceptance
made it hard for many to see the true potential of the
tool. As we work to bring the learning opportunities that
computers bring, we should communicate this in ways
that don’t undermine the tools’ true potential.

Failure, or just the start?
Some would say Logo failed to realise its ambitions,
but success depends on perspective. Without Logo we
wouldn’t have Scratch, making coding accessible to young
children, and governments wouldn’t have adapted curricula
in response. If Logo’s story is a 40-year one, perhaps it
failed, but I suspect this story will be much longer...

A

Raspberry Pi’s Oliver Quinlan discusses Logo’s influence, 40 years on...

Oliver Quinlan is Senior Research Manager at the
Raspberry Pi Foundation. He works to better understand

how people learn and make with technology.

FAILURE TO START?
THE LEGACY OF LOGO

OLIVER QUINLAN SENIOR RESEARCH MANAGER

OPINION

http://www.helloworld.cc

helloworld.cc 43

BCS, the chartered insititute for IT, has big plans for the future. Our vision is for every Secondary
school to have outstanding computing teachers. The BCS scholarship scheme provides you with the

opportunity to help inspire students and encourage them into computer science…

BCS SCHOLARSHIP SCHEME

he last few years have brought
about many changes in the

curriculum, with a focus on establishing
computer science as a foundation subject.
This, in turn, has led to more incentives
being made available for those who may be
considering going into teaching.

Since 2013, BCS has been in
partnership with the Department of
Education (DfE), offering a teaching
scholarship aimed at creating the next

STORY BY Abigail Edwards

T

ARE YOU ABLE TO SUPPORT A TRAINEE
THROUGH A SCHOOL-CENTRED INITIAL
TEACHER TRAINING (SCITT) SCHEME?

“

FEATURE

Eligibility
n You are likely to achieve, or you have

already achieved, a 1st, 2.1, or a 2:2 degree.
n Have obtained, or go on to obtain, a place

on an ITT course leading to computing/
computer science initial QTS at secondary
level in England.

n For more information on eligibility, visit:
helloworld.cc/2jnGMne.

Testimonial
“Having worked in the software industry for 14
years, I decided to make the switch to teaching
due to the exciting opportunity it presents
to share my knowledge and enthusiasm for
computing and learning. This, coupled with the
excellent opportunity presented by the BCS
scholarship scheme meant that it was possible
for me to make a mid-career switch. I’m now
convinced I made the right decision”.

- Richard Johnson, BCS Scholar.

Scholarship benefits
n Mentoring
n Training
n Support
n Membership
n Master Teacher Priority

THE SCHOLARSHIP

generation of computing teachers for
our Secondary schools. The scheme has
proved a great success, with more than
1,000 applications over its four years.
We’ve worked with over 130 schools, and
with major employers including Microsoft,
Google, IBM, Goldman Sachs, BT, HP,
Metaswitch Networks, Toshiba, Ocado,
Morgan Stanley, and Citrix.

Apply today
Each scholarship is worth £27,500 (tax-
free), and we intend to award around
120 scholarships per year. The funding is
supplied by the Department for Education,
and is paid in instalments over your year
of Initial Teacher Training (ITT). Your
course will need to lead to your gaining

Qualified Teacher Status (QTS) at secondary
school level.

Do you want an extra computing
teacher in your department for free? Are
you able to support a trainee through a
School-Centred Initial Teacher Training
(SCITT) scheme?

Do you think you have - or someone
you know has - the potential to become an

effective leader, developing the professional
competencies of others? If so, a £27,500
tax-free BCS scholarship is available.

For more information and how to apply,
please visit: helloworld.cc/2jqDLCC.

n Get involved with computer science education:
apps.bcs.org/Scholarship

http://www.helloworld.cc
http://helloworld.cc/2jnGMne
http://helloworld.cc/2jqDLCC
http://apps.bcs.org/Scholarship

helloworld.cc44

What would a curriculum contain if its aim was to broaden participation in CS? Neil Rickus looks
at the approach taken by this successful project in Los Angeles, following a visit funded through

The Goldsmiths’ Company Grants for Teachers.

EXPLORING COMPUTER SCIENCE
ENHANCING CS LEARNING OPPORTUNITIES FOR ALL

xploring Computer Science is a
school and university partnership

aiming to “increase and enhance computer
science (CS) learning opportunities” within
the Los Angeles Unified School District
(LAUSD), which has now been adopted by
schools in other districts across the USA.
ECS also aims to broaden participation in
the subject by female, African-American
and Latino/Latina students. Student
enrolment from all groups has increased
year on year since the project began, with
students’ understanding of CS and their
attitude towards the subject enhanced
after participating in ECS. Having been
given the opportunity to visit the team and

observe ECS lessons, I was keen to compare
the ECS curriculum with the English
computing national curriculum (NC). This
was particularly motivated by the recent
media coverage of Roehampton University’s
annual study of computing education, which
highlighted the limited number of girls
and pupils from poorer backgrounds and
ethnic minorities taking GCSE and A-level
computing (helloworld.cc/2jmYuY4).

The ECS curriculum can be downloaded
for free by schools from exploringcs.
org, and is usually studied by 9th-grade
students (aged 14–15) with no prior
knowledge of CS. The curriculum has a
specific topic focus for each half-term, with

STORY BY Neil Rickus

n Collaborative problem-solving is a key component of the ECS curriculum

FEATURE

E individual lesson plans available; teachers
can adopt the sessions to the needs of
their pupils, for example nancyse.com,
which was made by one of the teachers
I met. When compared to the computing
NC at KS1-3, three areas within the ECS
curriculum are particularly noteworthy and
could form part of computing lessons in
English schools. I’ll look at the pedagogy of
ECS in another article.

Computing in society
Despite being named “Human-Computer
Interaction”, the initial ECS unit focuses
on technology’s broader role in society,
rather than specifically on interface design.
It’s deemed essential due to the limited
exposure to technology within the lives of
many ECS students. For example, a teacher
at an ECS professional development (PD)
event noted that “loads of our students
don’t have smartphones”.

The computing NC outlines the
importance of using technology “safely”
and “respectfully” in KS1-3, with KS3
emphasising the importance of creating
projects “meeting the needs of known
users” and working with “digital artefacts
for a given audience”. While ECS lessons
also cover these areas extensively,
sessions during the first unit of work
spend significant periods examining the
appropriateness of technology in a range
of situations. For instance, when discussing
communication, pupils are asked to consider
the implications of being able to interact

http://www.helloworld.cc
http://helloworld.cc/2jmYuY4

helloworld.cc 45

with several people at the same time, and
whether using a text message is suitable for
breaking up with a boyfriend or girlfriend.
In addition to this, the impact of machine
learning and artificial intelligence (AI),
including the Turing Test, are explored
before working at a computer.

How could I use this in the classroom?
Consider discussing the potential impact of
pupils’ work, such as when programming
or producing web-based content. For
example, producing a chat bot is a common
introductory task in Python at upper KS2/
KS3. Prior to programming, time could
be spent examining when and where the
technology could be used, how this impacts
society, and showing real-world examples,
such as the “world’s first robot lawyer” at
donotpay.co.uk.

Focus on problem-solving
The requirement to analyse and solve
problems is a key aim of the computing NC.
The concepts and approaches contained
within Computing at School’s (CAS)
Barefoot Computing (barefootcas.org.uk)
often form part of pupils’ problem-solving

processes, with Computing Unplugged
(csunplugged.org) or activities away from
the machines used to teach CS concepts.

Within Unit Two of the ECS curriculum,
students are introduced to the “four
steps of the problem-solving process”,
as defined by Poyla in How to Solve It,
which allows them to structure and record
their thoughts as they attempt a range of
problems. The process is reinforced through
examining a range of problems linked to
mathematics, including the handshake
problem (helloworld.cc/2jADdg0) and the
fencepost problem (helloworld.cc/2jABXtb).
As with the computing NC at KS3, the
binary number system and various
searching algorithms are taught. An
end-of-unit assignment investigating the
travelling salesman problem also forms
part of the ECS curriculum. It’s worth

noting these problems and concepts are
examined before pupils are introduced to a
programming environment for the first time.

How could I use this in the classroom?
Pupils could be encouraged to articulate
their thinking when attempting to solve
a problem, with the process formalised
depending on the age of the children. It may
be appropriate to record/video tasks, which
could be subsequently edited by pupils.

Children may also be encouraged to reflect
on their behaviour and attitude during the
problem-solving process, such as through
the rubrics recently published by Phil Bagge
on code-it.co.uk.

Engagement through robotics
The need to undertake programming
related to physical systems is contained
within both KS2 and KS3 of the design
and technology NC. Access to devices
varies between schools, although the
BBC’s recent micro:bit project has meant a
number of secondary pupils own additional
hardware. Primary age-specific devices are
increasingly available, particularly at KS2,
including the Crumble and CodeBug, and a
number of primary schools also make use
of micro:bits.

ECS’s final unit focuses on robotics and

PUPILS COULD BE ENCOURAGED TO
ARTICULATE THEIR THINKING WHEN
ATTEMPTING TO SOLVE A PROBLEM

“

uses the relatively inexpensive (US$33
per device for a class set) Edison Robot
meetedison.com, which is extremely
durable and physically compatible with
LEGO. The device can be programmed
using a block-based programming
environment. As part of the ECS unit,
pupils enter the RoboCup Junior robotics
competition and program the device to
“rescue” people.

How could I use this in the classroom?
If robots are not available in school, they
could be trialled as part of a computing
club or digital leaders programme before
purchasing a class set. Alternatively,
devices could be borrowed from local
schools or a CAS Regional Centre where
available. When discussing the unit
of work, a member of the ECS team
noted how engaging the competitions
were; pupils could thus be entered
into age-appropriate events, such
as the recent micro:bit Bloodhound
Rocket Car contest or PA Consulting’s
Raspberry Pi competition.

Evaluating impact
Finally, during the next academic year, the
ECS team plan to examine the project’s
impact over time in more detail, with
extensive research findings to follow in due
course. In addition to this, an e-textiles unit is
soon to be published, which has been well-
received in initial trials.

So, why not download the ECS curriculum
and try some of the ideas outlined above? Do
get in touch on Twitter @computingchamps
and let me know how you get on.

ECS builds on the research presented
in Stuck in the Shallow End: Education,
Race, and Computing, which examines
the experiences of pupils in three Los
Angeles schools. A range of inequalities
were discovered to be limiting pupils’
opportunities to choose CS as a field of
study, with possible solutions proposed.
The book was the recipient of the 2009
American Association of Publishers Prose
Award in Education.

THE RESEARCH BEHIND ECS

STUCK IN THE SHALLOW END
BY Rachel Estrella,

Joanna Goode,
Jennifer Jellison
Holme & Kim Nao
(2008)

PUBLISHER MIT Press
PRICE £14.95
ISBN 9780262514040
URL helloworld.cc/2iyBvXZ

http://www.helloworld.cc
http://www.barefootcas.org.uk
http://helloworld.cc/2iyBvXZ
http://helloworld.cc/2jADdg0
http://www.code-it.co.uk
https://twitter.com/computingchamps?lang=en
http://helloworld.cc/2iyBvXZ

helloworld.cc46

Many children find the jump from visual programming languages such
as Scratch to text-based languages such as Python a challenge. This
lesson aims to ease that transition for them…

MOVING FROM
SCRATCH TO PYTHON

isual programming
languages are great fun,

avoid annoying syntax errors, and
are accessible to children of all ages.
There comes a time when they
must move on, though, and learn
to access the greater power and
flexibility of text-based languages.
This transition can be tricky for

LESSON PLAN

V
some students, as their tiny syntax
errors cause cascades of errors, and
misplaced indentation or forgotten
semicolons can send their programs
spiralling into infinite loops. Here I’ll
outline one method of introducing
a few little snippets of the Python
language to students, by using
analogous programs in Scratch 2.0.

Getting started
Hopefully, your students will already
be familiar with Scratch or some
other block-based programming
language. You could print the
translation grid out or import it into
a slide deck, but the key part will
be covering up some of the table
cells, to provide your students
with a challenge.

It’s a good idea to teach your
students how to clear the screen and
centre the turtle in both Scratch and
Python before you begin.

Initially, you could provide the first
row of the table as it is shown here,
and let your students try out the
scripts in both Scratch and Python,
so they can see the similarity of the
output and have an understanding
of the some of the basics of
Python syntax.

The next stage would be to
cover up the Scratch blocks in the
second row. Let your students read
through the Python code and try
to have them explain what they
think the code is doing. They can then
try and reproduce this in Scratch.

• A computer -
Linux, Mac OS,
or Windows

• Scratch 2.0

• Python 3 with
IDLE or access
to trinket.io

11-12 years

• Visual / block-
based coding

• Text-based
programming

REQUIREMENTS

AGE RANGE

LESSON TYPE

 To begin with, have the students try out some of the scripts
in Scratch and Python to see the output produced

 Next, give your students a small Python script
and see if they can reproduce it in Scratch

 Getting trickier now; get your students to convert
a Scratch script into Python

 Finally, show them a drawing and have them try
to reproduce it using both Scratch and Python

THE CHALLENGE

http://www.helloworld.cc
http://trinket.io

helloworld.cc 47

 Which commands are very similar in Scratch and Python?

 Which commands are different in Python to the ones you use in Scratch?

 How can you tell when commands are in a loop in Scratch and Python?

ASSESSMENT

There are other ways you could use this style
of activity with students, in a variety of contexts.

7-10 years - Unplugged
 You might like to provide students with a mixture of Scratch and

Python scripts printed out, then have them try to draw the expected
output from the scripts.

11-13 years - Physical computing
 Using NuScratch and the Python GPIO Zero library, you could adapt

this lesson to introduce students to physical computing with Python,
and show them how much simpler Python can be.

14-15 years - Programming
 This type of lesson works well when introducing a new language to

students. Why not try providing them with comparable Python and
JavaScript code snippets?

ALTERNATIVE ACTIVITY IDEAS

Resources
Code in editable format: helloworld.cc/2iDeMND

Individual code block images: helloworld.cc/2iDd0vZ

Python Code in Gist format: helloworld.cc/2iD8kGx

HOPEFULLY YOUR STUDENTS
WILL ALREADY BE FAMILIAR
WITH A BLOCK-BASED LANGUAGE

“

Next, you could hide both the
Scratch blocks and the output,
and give your students the
opportunity to try and understand
what the Python code is doing,

without any hints available. You
could continue doing this, or if
your students show some aptitude at
reading the Python code, you could
remove some of the lines of Python

and have them try and figure out
what is missing. They can then use
IDLE or trinket.io to test out the
code they have written and try and
reproduce the output.

Finally, when your students are
ready, provide them with only the
output images, have them first write
the code in Scratch, and then finally
reproduce it in Python.

http://www.helloworld.cc
http://helloworld.cc/2iDeMND
http://helloworld.cc/2iDd0vZ
http://helloworld.cc/2iD8kGx

helloworld.cc48

from turtle import *
forward(100)
right(120)
forward(100)
right(120)
forward(100)

from turtle import *
color(‘red’)
for i in range(6):
 forward(100)
 right(60)

from turtle import *
color(‘green’)
while True:
 forward(2)
 right(2)

from turtle import *
color(‘blue’)
length = 0
for i in range(300):
 forward(length)
 right(15)
 length = length + 0.1

from turtle import *
colour = input(‘Should I be blue or magenta? ‘)
if colour == ‘blue’:
 color(‘blue’)
else:
 color(‘magenta’)
for i in range(4):
 forward(100)
 right(90)

from turtle import *
from random import *
speed(10)
colours = [‘red’, ‘green’, ‘blue’, ‘magenta’]
for i in range(360):
 forward(100)
 backward(100)
 right(1)
 color(choice(colours))

Scratch Python Output

http://www.helloworld.cc

helloworld.cc 49

https://www.appsforgood.org/

Introduce students to pathfinding algorithms and build their
problem-solving skills with this jungle maze scenario

JUNGLE MAZE SOLVER
ou’re on an expedition in
the middle of the deep

jungle; it’s very thick and overgrown.
A party of fellow explorers have
become lost and sent back a distress

signal with their coordinates.
You’re safe at camp and need
to come up with a plan to bring
them home safely, but the jungle
is very dangerous and the camp

leader doesn’t want to send any
more people in case they get
lost too. Luckily, at camp you
have access to a map grid and a
programmable robot.

LESSON PLAN

Y• Pen and paper

16-18 years

Unplugged

REQUIREMENTS

AGE RANGE

LESSON TYPE

helloworld.cc50

http://www.helloworld.cc

Devise a set of rules for the robot
to follow to find the explorers
Rather than simply finding a path
through one maze, this lesson
focuses on creating an algorithm
which can be generalised to solve
any maze it’s presented with. The
aim is for learners to work together
to think about how this could be
achieved, before demonstrating
their algorithm to the class. Ideally,
after presentation there should
be opportunity for reflection and,
potentially, further iteration upon
their solution.

As an extension, learners could
swap strategies with another group
and attempt to follow the other
group’s rules. Are the rules they
provided clear? Different groups
could test different mazes to

investigate whether the design of
the maze makes any difference to
their solution. Groups could devise
mazes they think are difficult and
set them as a challenge for other
groups. What properties would make
a maze difficult to solve? Would it
make any difference if you could see
ahead by more than one square? Is
there anything else you would want
the robot to be able to do that it can’t
currently do?

 Some of the map squares are clear; in some squares,
prickly plants block the path

 The robot can detect whether the map square
immediately ahead is clear or not

 The robot can move forwards, reverse, and rotate left/right

 The robot isn’t remote-controlled - once you release it,
it’s gone!

 The robot has a memory

 The robot can be programmed with rules to follow. An
example of a rule might be “If the square ahead is blocked,
rotate 90 degrees right”

OPTIONAL
It’s getting dark - the quicker you find the lost explorers,
the better!

THE CHALLENGE

 How did you discover bugs in your instructions for the robot?

 Describe a bug and how you solved it

 How could your instructions for the robot be improved?

ASSESSMENT

Explore and make
Adapt this project theme for other age groups:

5-6 years - Unplugged
 Ask students to program Bee-Bots to reach the lost explorers
 Construct a real-world maze where students program each other

11-13 years - Programming
 Trace a path to the lost explorers using turtle software
 Write a program to auto-generate a randomised jungle maze in

Minecraft

14-18 years – Physical computing
 Build a robot and program it to move through a physical maze

ALTERNATIVE ACTIVITY IDEAS

The A* algorithm and Dijkstra’s
algorithm are included in A Level
Computer Science; a natural
progression from this lesson would
be to examine and test these
algorithms on the jungle maze.

helloworld.cc 51

FURTHER READING
Maze solving: helloworld.cc/2k4zUul

Basic Raspberry Pi robotics: helloworld.cc/2iNFY9p

http://www.helloworld.cc
http://helloworld.cc/2k4zUul
http://helloworld.cc/2iNFY9p

Build a text adventure with a twist – introducing the dictionary data structure.

ESCAPE FROM
RAVENSWOOD MANOR

t’s a dark and chilly night at
Ravenswood Manor. You

awake in an unfamiliar room with
little idea of how you got there, and

an overwhelming urge to escape.
Will you be able to find the path to
safety, or will you fall prey to Lady
Ravenswood and her minions?

LESSON PLAN

I

• Pen and paper
• Python 3

14-16 years

Programming

REQUIREMENTS

AGE RANGE

LESSON TYPE

helloworld.cc52

http://www.helloworld.cc

Students begin by designing the
inside of Ravenswood Manor on
paper. Often, the task of planning
before beginning to program is an
unpopular one, but for this particular
exercise students will find their
planning crucial to the success
of the task.

The aim is to introduce the
dictionary data structure, so that we
can model the rooms of the manor
and where the player can move in
between rooms.

Create a dictionary for each
possible direction a player could
move. For example, in a 3x3 grid:

 north = { 0: None, 1: None,
2: None, 3: 0, 4: 1, 5:2,
6:3, 7:4, 8: 5 }

The format 0 : None means when
in room 0 and they choose north,
move to None (i.e. there is no path
to the North). Or, 4:1 means when in
room 4 and they choose north, move
to room 1.

We can also use dictionaries to
store the descriptions of the rooms:

 description = { 0: "You are
in a cold damp cellar. Rats
are everywhere.",
 1: "You are in a kitchen

store room",
2: "You are in a long

chilly corridor" }

Traps in the rooms…

 trap = {0: "You spot some
cheese in a corner. Should
you pick it up? y/n" …}

...correct answers to the traps...

 correct_answer = { 0: "n"
… }

...and responses, depending on
what was chosen…

 trap_y = { 0 : "Thank
goodness you didn’t pick up
the cheese, it is infested
with rats" …}
trap_n = { 0 : "You get set
upon by a swarm of rats and
die horribly. Oops." …}

Students can then use programming
concepts they are familiar with to piece
together the adventure:

current_room = 0
where_next = ""
while current_room is not
None:

 Design your layout on paper

 Devise some fiendish traps for the player to encounter

 Decide the routes through the manor and the location
of the exit

THE CHALLENGE

Explore and make
Adapt this project theme for other age groups:

11-13 years - Programming
 Provide a skeleton program with the dictionaries already initialised

16-18 years – Programming
 Add to the program to allow the player to pick up and interact

with items
 Add hit points – instead of causing instant death, traps can damage

the player
 Add a sound or a picture to display upon entering each room

ALTERNATIVE ACTIVITY IDEAS

print(description[current_
room])
 where_next = ("Which
direction? ")
 if compass[where_next]
[current_room] is not None:
 current_room =
compass[where_next][current_
room]
 else:
 print("There is no path")

 How did planning your game help you?

 Why are dictionaries more suitable
than lists for this task?

 Did you include any input validation?
Why is validation important?

ASSESSMENT

helloworld.cc 53

RESOURCES
Dictionaries in Python:

Download the code:

helloworld.cc/2jyHWhR

helloworld.cc/2k4cfht

http://www.helloworld.cc
http://helloworld.cc/2jyHWhR
http://helloworld.cc/2k4cfht

helloworld.cc54

 Create a new Scratch project and delete the cat sprite.

 Add the castle4 backdrop.

 Add a Rainbow sprite and its code. Shrink the sprite. Turn
on the ‘can drag in player’ setting, so that the player can
drag Rainbows around, even in Fullscreen mode.

 Add a Candle sprite and its code. The Candle has the same
code as the Rainbow; you can drag the code from the
Rainbow to the Candle sprite to copy it and save work.

 Add a Dragon sprite and its code.

 Add more objects for the dragon to react to. What
might the Dragon do if it bumped into a rock or found
a microphone? What if the Dragon met a lion?Drag the
Rainbow to the Candle sprite to copy it and save work.

THE CHALLENGE

Create a castle with a dragon that performs actions when it bumps into objects.
Maybe your dragon will change colour when it flies over a rainbow...

MY AMAZING CASTLE
reate a project that allows
the player to control the

dragon by placing objects around
the stage. Start with the rainbow
and candle, and then add your
own objects.

LESSON PLAN

C
• Scratch 2.0

7-10 years

Visual / block-
based coding

REQUIREMENTS

AGE RANGE

LESSON TYPE

Lesson Outline:
• Demonstrate the completed

project on an interactive
whiteboard.

• Step through the code,
explaining any concepts that are
new to your class.

• Give children the instructions
and sample code, and have
them complete the project.

• Share projects with the class
or give pupils the chance to try
their projects out on younger
children in the school.

http://www.helloworld.cc

helloworld.cc 55

It’s important for children to learn how
to create a project that will be used
by someone else. When KS2 pupils
have made their project, pair them
with younger children in the school.
The children who have developed the
projects should explain how to use

the project, and then let the younger
pupils place icons to customise the
scene. This will enable the KS2 pupils
to learn how to create a project with
a user in mind, and explain how their
project works.

Inspired by Papert
This project was inspired by the
work of Seymour Papert. Papert
realised that young children could
learn to code if they were given the
right tools. Papert’s My Make Believe
Castle allows children to customise
a castle by placing icons that trigger
behaviours in characters.

 Did you learn any new Scratch skills in this project?

 What do you need to do to add a new object and action for the dragon?

 How could you make your project more fun for younger children?

ASSESSMENT

This lesson can be adapted to different age groups.

5-6 years - Unplugged
 Children create their own castle scene, using a finished project created

by older children or a teacher. They learn that they can control what the
dragon does by placing pictures.

11-13 years - Programming
 Learners extend the idea by having characters interact with other

characters. Add multiple ‘rooms’ to the castle with different objects
and characters in each.

ALTERNATIVE ACTIVITY IDEAS

Click the green flag to get the dragon flying around. You can
drag objects (rainbow and candle) around the stage. Click on
an object to create a copy of it. When the dragon flies over an
object, it will perform a corresponding action. s

FURTHER READING

Example project:

My Make
Believe Castle:

helloworld.cc/2jnq73c

helloworld.cc/2jnFUPt

http://www.helloworld.cc
http://helloworld.cc/2jnq73c
http://helloworld.cc/2jnFUPt

helloworld.cc56

Program the turtle to draw flags from around the world, and design your very
own flag, in this introduction to programming in Python via groklearning.com

PYTHON TURTLE
FLAGS OF THE WORLD

eet the turtle. It can draw all
sorts of things… with a little

help from you!
Write your own programs to help

the turtle draw and colour flags from
around the world, or get creative and

design your very own flag.
This beginner-friendly online

coding activity introduces you to
the programming language Python.
You will write and debug your
own code, develop computational

thinking skills, and get a little
geometry practice along the way.
The turtle makes programming
visual, allowing you to see exactly
what your program is doing at
every step.

LESSON PLAN

M

• groklearning.com
website
(free to access)

• Computer
• Internet

connection

11 - 13 years

Text-based
programming

REQUIREMENTS

AGE RANGE

LESSON TYPE

 An example problem from the
Flags of the World activity. Circles

represent the interactive note slides;
diamonds represent the problems

The editor where students can
write, test, and debug their

programs. Running the program
shows an animation of the program

in action below

Students can submit their
program for auto-marking
to check that it’s correct,

and to see hints for fixing it
if it’s not.

http://www.helloworld.cc

helloworld.cc 57

This online activity is structured
as a sequence of interactive notes
and challenge problems for students
to solve. As students learn how
to manipulate the turtle, changing
angles and drawing lines and
shapes, they are challenged to draw
flags of increasing complexity.

Interactive notes
Most note slides contain interactive
examples which can be run by
clicking the u button in the top-right
hand corner of the example box.
Encourage students to run these
examples when they see them.

Challenge problems
After writing, running, and
debugging their program, students
can submit it to the auto-marker to
check if it’s correct and, if not, to see
hints for fixing it.

If students run into difficulties
solving the problems, encourage

 Read the interactive notes and solve the coding challenges

 Program the turtle to draw flags from around the world

 The turtle follows a sequence of instructions to draw
on-screen

 The turtle can move forwards or backwards, and rotate
left or right

 Move the turtle by specifying the number of turtle steps

 Turn the turtle by specifying the angle of the turn

 Use Fill to colour shapes the turtle has drawn

 Submit your program for auto-marking and find out
if it’s correct!

THE CHALLENGE

 What commands did you learn
to program the turtle?

 How did you decipher error
messages and/or fix bugs?

 How did you work out the angle
you needed to turn?

ASSESSMENT

Differentiation Ideas
This activity can be adapted to provide more
scaffolding and support for younger and less
confident students, or extended for older students.

7-10 years - Unplugged
 Introduce younger students to turtle programming
by having them physically act out turtle commands

 Have students work in groups to write, test, and debug a set of
instructions which one student, the turtle, then has to follow

 Challenges might be to walk once around the whole classroom, starting
and finishing at the door, or to make it through an obstacle course

11-13 years - Collaborative programming
 Work through the content slides and interactive examples as a class.
Encourage students to make hypotheses about the examples before
running them

 Have students solve the problems together as a class or in small groups.
Encourage peer mentoring for students who are stuck

 If students are pair programming, have the less confident student
do the typing

14-16 years – Text-based programming
 Encourage students to come up with their own flag designs
and run a competition to pick the best design

 Challenge students to draw the flag of their own country,
or that of their parents or grandparents

 Introduce students to more concepts, including loops,
by moving onto the Frozen Fractals activity

ALTERNATIVE ACTIVITY IDEAS

FURTHER READING
What is Python?: www.python.org

Papert’s Turtle: helloworld.cc/2iyr5Yu

them to try to persevere with them
independently. They can look at
the marking notes for hints to help
them diagnose what’s wrong,
or go back through the content
slides. As a teacher, you also have
access to Teacher’s Notes in the
top-right corner of the header,
where you will find explanations
of the solutions.

Creative play
At the end of the activity there is
a Playground where students can
further experiment with the skills
they have been practicing. Seymour
Papert first introduced turtle graphics
with the aim of giving students open
opportunities to create, discover,
and extend their own learning.
Now that your students have
mastered the basic turtle commands,
the Playground offers them this
opportunity for experimentation
and creative play.

http://www.helloworld.cc
http://www.python.org
http://helloworld.cc/2iyr5Yu

helloworld.cc58

How do we get young children thinking computationally and taking their first steps
with programming? Emma Goto, Senior Lecturer in Teaching Development at the

University of Winchester, believes the key is to let them play…

PLAYFUL COMPUTING

xperienced teachers of young
children will tell you that children

learn an enormous amount through their
play. Before children start school, the
list of what they have already learned is
extensive. In most cases, they learned
these early skills not through direct
teaching, but through play and exploration
motivated by curiosity and wonder. If
we want to develop young children’s
computational thinking and understanding
of computing, we should capitalise on
these experiences.

Jeanette Wing introduced the term
‘computational thinking’ to describe
approaches to problem-solving that utilise
key concepts from computing. Approaches
such as logical thinking, decomposition,
abstraction, generalisation, and the
creation of algorithms are the basics of
computational thinking.

Those involved in the education of young
children understandably have concerns about
the risks of too much screen time. However,
many of the richest opportunities to develop
children’s computational thinking don’t
even involve digital technology. In the Early
Childhood setting, children are playing all the
time. They construct their understanding of
the world through their play. Whether they
are building a den, making Lego structures,
doing a jigsaw, drawing a picture, or playing
with puppets, children will encounter problems
in their play. Problems may include how to
move some water to the digging area, or how
to build a bridge across the car track, and can
provide opportunities to develop children’s
computational thinking. These problems
belong to the children, therefore they are
meaningful to them, and the children are very
motivated to solve them. In these situations,
the Early Childhood Practitioner can support

the development of children’s thinking both
through their interactions and through
careful questioning.

By asking children if they have ever seen
a similar problem, we are encouraging them
to identify patterns and we can support
them to generalise prior solutions. We
promote abstraction when we ask children
if they can draw or build a model of their
problem. When we ask children to break
the problem up, sharing out responsibility
for different tasks, we are nurturing the skill
of decomposition. By encouraging children
to talk through solutions, we are supporting
them to develop an algorithm. Questions
that urge children to consider ‘What will
happen if…?’ encourage logical thinking.
Many practical play situations provide
opportunities to get children thinking
computationally, without going anywhere
near a computer or digital device.

STORY BY Emma Goto

E

IMAGES BY Yoshihiro Goto

FEATURE

http://www.helloworld.cc

helloworld.cc 59

Programmable toys
Playful approaches can also be used to
support children to take their first steps
in programming: Bee-Bot, Blue-Bot, and
Roamer-Too are just a selection of the range
of programmable toys available nowadays.
These programmable toys enable children to
create simple programs in a fun and practical
way. Let’s look now at how children’s early
programming skills can be developed using
the Bee-Bot (alternative programmable toys
could, of course, be used).

The Bee-Bot is a small toy which is
programmed using seven buttons on the
top. Each of the buttons corresponds to

a command; therefore, the Bee-Bot is
programmed using a basic programming
language consisting of only seven
commands. There are buttons to make the
Bee-Bot move forwards or backwards,
buttons to make it turn left or right, a button
to make it pause, one to clear the program,
and a ‘Go’ button to run the program. The
small number of commands means the
Bee-Bot is simple to use and understand
for young learners. When the Bee-Bot is

first introduced, children will need time to
play freely with it. This will allow them time
to explore what each of the buttons do and
develop an understanding of how the Bee-
Bot behaves. Once children have familiarised
themselves with the Bee-Bot through free
play, they are ready to move on to solve more
structured problems with the toy.

One way to facilitate this is through
the use of a grid or mat; it’s possible to
buy mats for most programmable toys.
Alternatively, children and practitioners can
create their own mats. This gives children
ownership of the mat and also allows them
to be tailored to match the stories, themes,

or topics that are being followed within the
curriculum at that time. Bee-Bots travel
in steps that are 15 centimetres long;
therefore, a simple Bee-Bot mat can be
created by drawing out a grid of horizontal
and vertical lines 15cms apart on a 60cm
square of paper, creating a 4x4 grid. In the
photograph here you will see an example
of a mat created around the theme of the
book The Very Hungry Caterpillar.

To develop children’s computational

thinking through this type of activity,
ensure that children are given time
to produce an algorithm before they
create their program. Give them a small
whiteboard and dry-wipe marker so that
they can write or draw their algorithm. This
will be a simple plan of the steps they will
need to go through to solve their problem.
Once they have this algorithm, they can
use it to program the toy.

Making progress
Teachers often worry that if children use the
same programmable toys over a number of
years, there will be no progression. However,
progression does not come from using more
complicated equipment; instead, we need
to provide more challenging problems to
ensure the children make progress with their
learning. For example, by using the Bee-Bot
mat that was illustrated earlier, children new
to programming may be asked to move the
Bee-Bot to the apple. The more experienced
programmer might be set the challenge of
moving the Bee-Bot to each of the items of
fruit the caterpillar ate in the correct order,
whereas children who are more capable
might be required to move the Bee-Bot to
each piece of fruit eaten in the correct order,
pausing on each meal in turn whilst avoiding
going over the same piece of fruit twice and
steering clear of the junk food. If children are
able to solve the problem first time, without
the need to debug their solution, the problem
posed was too simple. The Bee-Bot will
allow you to create a program with up to
40 commands, so there is scope to create
some longer programs to solve more
complicated problems.

So, if you want to get young children
creating programs, encourage them to use
playful approaches.

ENSURE THAT CHILDREN ARE GIVEN
TIME TO PRODUCE AN ALGORITHM
BEFORE THEY CREATE THEIR PROGRAM

“

n Children can collaborate to solve problems with
programmable toys. Giving children individual
whiteboards, and asking them to plan out their algorithm
before programming the toy, supports the development of
computational thinking.

Programmable toy rulers – Simple rulers the
length of one step of the programmable toy can
be produced to support children when solving
problems. Bee-Bot moves in 15cm steps, so 15cm
Bee-Bot rulers can be created.

Instruction cards – Sets of instruction cards can
allow children to represent their algorithm. These
cards can be reordered easily, supporting children
to debug their solutions. These types of instruction
cards can often be purchased from programmable
toy manufacturers but home-made cards are also
easy to produce.

Mazes – You can buy various mazes and maps
for different brands of programmable toy; however,
these can also be created using resources such as
wooden building blocks.

Route cards – Square cards, with sides the same
length as one step of the programmable toy, can be
produced to mark out routes that children program
the toy to follow. Bee-Bot moves in 15cm steps, so
square route cards with 15cm sides should be used.

OTHER USEFUL RESOURCES

http://www.helloworld.cc

helloworld.cc60

Easy to adapt to the abilities of your pupils, lots of space for exploration in a maths-based context,
and great opportunities for computational thinking. Here are three activities you could try today…

TURTLE GRAPHICS
MADE EASY IN SCRATCH

urtle graphics can be used with
pupils as young as seven. Pupils’

programming skills can be developed
alongside their mathematical knowledge
and understanding. For example, pupils
can use turtle graphics to explore simple
right-angled shapes, discover the
properties of regular 2D shapes, create
and adapt repeated patterns, draw shapes
using coordinates, and write programs to
translate, rotate, and enlarge shapes.

Exploring right angles
Mark out stairs, squares, rectangles, and
block letters (such as H, E, and T which
can be drawn using right angles) on the
playground or on the classroom floor using
chalk or masking tape. Ask the pupils to
walk on the shapes, whilst recording the
steps they need to create the shapes using
Scratch language on a whiteboard or paper
(move x steps, turn right/left 90 degrees).
As pupils record the route they take, they
are recording their algorithm. As they then

code their instructions in Scratch, they are
converting their algorithm into code. You
will need to explain that Scratch steps refer
to pixels (dots) on the screen, while human
steps are much larger. Multiplying one
human step by ten when on Scratch works
well. If their code has a bug (error), they
can go back over their physical shape to
see what part of the algorithm is incorrect.
Reserve your highest praise for pupils
who debug errors: in doing so, you are
encouraging them to become independent,
problem-solving learners.

Properties of regular 2D shapes
Challenging pupils to draw regular 2D
shapes using Scratch is a great way to bring
a maths lesson alive. Don’t forget to draw
a shape other than a square on the floor,
and use elicitation to emphasise that pupils
are using part of the exterior angle, rather
than the interior angle. You could also ask
pupils to work out the interior angle and
leave it as a comment attached to the code.
Ask pupils to create their shape programs
using the smallest amount of code. In doing
this, you’re encouraging them to think about
algorithmic elegance and efficiency. At a
later stage, this can translate into how much
processing power or storage a program
uses, but in the early stages it can just be
about using the least code. This is a great
opportunity to introduce repetition through
the ‘repeat x times’ loop, if pupils haven’t
already discovered it.

GUIDE SCRATCH

T

http://www.helloworld.cc

helloworld.cc 61

2D shape patterns
If pupils haven’t already discovered it for
themselves, show them how a shape can
be repeated by nesting the shape code
within another ‘repeat’ loop. Allow pupils
plenty of time to explore the patterns
they can make using a wide variety of
2D shapes. Good teacher prompts are
vital here. How can you make that shape
rotate all the way round? Could you
make the gap in the middle smaller or
larger? How can you fit all your shape on
the screen? After they have exhausted
this creative play, explain that computer
scientists have a way of writing one
section of code that can be used to
draw any regular 2D shape. Explain that
the same code can draw an equilateral
triangle, a square, or a regular pentagon.
Ask them what properties all regular 2D
shapes have. They can look at their code
examples to check they all have length
of sides, number of sides, and angle of
turn. If we were asking a human to draw
a regular 2D shape, we could tell them
those three things and they could draw
the shape. Using the ‘more blocks’ tool in
Scratch 2.0, create a block called ‘shape’
with three numerical inputs. Add those
inputs called ‘length of side’, ‘number of
sides’, and ‘angle’ into the move, repeat,
and angle blocks as illustrated. Pupils can
now use this procedure block to create
any regular 2D shape. Allow time to
experiment with this idea.

using Beetle Blocks (beetleblocks.com/run),
and everything learnt easily translates into
text-based programming in languages
such as Python, which has its own turtle
graphics library.

Phil Bagge
Computing Inspector/Advisor
Hampshire, UK
@baggiepr

Assessing understanding
With all turtle graphics programming
it can be hard to assess pupils’ deep
understanding from work output alone.
It’s possible to create complex patterns
without a full understanding of what is
happening in the code. A really useful
assessment activity is to present pupils
with a series of progressively more
complicated patterns for which they
need to write an algorithm before they
try to replicate the code. Their algorithms
are a best endeavour in a short time
frame, but they reveal lots about pupils’
comprehension of the task. Do they use the
procedure blocks? Do they understand the
importance of the loop? If they’re not used
to creating algorithms, then an example
can help introduce a basic pseudocode.

Repeat 9
 shape 50 5 72
 move 20

Solving problems using ‘move’, ‘turn’,
and ‘pen’ turtle command blocks in Scratch
is something that every pupil should
experience in their primary/elementary
education before moving on to work with
coordinates, drawing, translating, enlarging,
and rotating shapes, and investigating
even more complex spatial puzzles
through the wonderful medium of turtle
graphics in Scratch. Pupils can extend
their understanding further into 3D design

Barefoot computing has more detailed 2D shape
planning at barefootcas.org.uk . The code-it site
has sheets to help assess 2D shape patterns
(helloworld.cc/2ijvHS7) and investigate
coordinates (helloworld.cc/2ijzrTA), as well as
investigating translation (helloworld.cc/2ijxVkt),
enlargement, and rotation (helloworld.cc/2ijxVkt)
using turtle graphics in Scratch.

MORE DETAILED PLANNING

http://www.helloworld.cc
https://twitter.com/Baggiepr?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
http://barefootcas.org.uk
http://helloworld.cc/2ijvHS7
http://helloworld.cc/2ijzrTA
http://helloworld.cc/2ijxVkt
http://helloworld.cc/2ijxVkt

helloworld.cc62

Have you ever wanted to make VFX and games graphics like the professionals?
Blender allows you to do this for free, from the comfort of your own computer…

GET STARTED WITH FREE
3D MODELLING SOFTWARE

D graphics are all around us, in the
games we play and the TV and

films we watch, yet very few people know
how to make them. 3Dami and b3d101
allow 6- to 18-year-olds to express their
creativity in three dimensions, using
industry-standard tools. 3D animation can
also be a great way to teach some core
computational thinking concepts like:

Decomposition - Breaking a film down into
shots, models, animations, sets, lighting,
etc. Breaking down models into materials,
textures, bones, faces, vertices, etc. Breaking
down animations by first blocking it out, then
adding extremes, and finally polishing.

Pattern recognition - Using base models
to build different characters, vehicles,
etc. which share common attributes.
Recognising the patterns inherent to
creating realistic animations. Sharing assets
across multiple shots.

Abstraction - Visual abstraction: the
reduction in detail to reduce the render
time of poorly observed objects; this may
involve only modelling part of a scene or
making a ‘low-poly’ representation of an
object that doesn’t feature prominently in a
scene. Artistic abstraction, where an object
is represented in a deliberately unrealistic
style, with students recognising the features
critical to the representation of the object.

Algorithm - The process of making a short
film, from storyboarding to using keyframing
for animation. Techniques for making specific

TUTORIAL

 Blender - blender.org/download Mac or Windows / Linux PC WHAT YOU NEED

3

WRITTEN BY Monique Dewanchand, Peter Kemp and Tom Haines

effects, e.g. the ‘recipe’ for making a virtual
building explode so that it looks realistic.
3D graphics theory as it applies to technical
artists, e.g. optimising render time.

In this tutorial you will learn to make a
snowman in Blender, a free tool used by
the industry. This will teach you the basics
of 3D animation: how to add, delete, move,
rotate, and resize objects, and finally render
(output) your masterpiece.

STEP 01
Download Blender
Blender is free; it works on Windows,
Mac, and Linux, and really old hardware.
You can even run it off a USB stick or a
shared drive.

STEP 02
Run Blender
When you run Blender you will meet a
splash screen like the one below; click
to the right to get rid of it.

STEP 03
The snowman’s body
Blender starts with a simple film studio
setup, that contains a camera, one light,
and a single prop in the form of a big
grey cube:

Snowmen aren’t made of cubes, so
we need to remove it. Make sure you’ve
selected the cube by right-clicking on
it, then press the X key and press Enter
to delete it. You can see which object is
selected as it has an orange border.

Now we need to add a sphere for the
snowman’s body. On the left-hand side of
the screen, click on the Create tab, then click
on UV Sphere. A ball will appear where the
cube was.

02

Unless you play Starcraft (a RTS computer game)
it might seem odd that in Blender the right mouse
button selects, whilst the left mouse button acts. This
may slow you down as a beginner, but experienced
users work much faster as a result of this design
decision. Without selection/action ambiguity,
much fewer mode switches are required to perform
common operations. If you’re unconvinced, go watch
a professional Starcraft tournament!

NOTE: RIGHT SELECTS, LEFT ACTS

03a

http://www.helloworld.cc
http://www.blender.org/download

helloworld.cc 63

Press F12 (Fn-F12 on a Mac) to render
the image you have created thus far, to see
what it looks like. Press Esc to get back to
the previous view. Don’t worry if you can’t
see your sphere yet; keep reading!

STEP 04
The snowman’s head
Add another UV sphere using the Create
tab; this will be the head. You will probably
find that the sphere appears on top of your
previous sphere, so will need to move it. Right
mouse click on the sphere to make sure it’s
selected; three arrows should appear:

(If the arrows don’t appear, at the bottom
of the screen find the ‘move’ arrow button
and select it).

Left mouse click on the blue arrow to
move the UV sphere vertically, and place it
above the body.

The snowman’s head is a little too large
for its body, so resize it by selecting the head
(remember to use the right mouse button),
then clicking on the Resize button.

Left mouse click on the square handles
and move them to reshape the snowman’s
head. (The more experienced amongst you
might want to press the S key and move
your mouse instead).

At this point you might want to check
that the head is in the right location and is
the right shape. To move around the 3D
space you can zoom in and out by scrolling
your mouse wheel, and rotate the view
of the snowman by pressing the middle
mouse button and moving your mouse.

STEP 05
The snowman’s nose
A snowman can’t smell without a nose,
so we need to create a carrot in Blender.
First, add a cone and move it to the front
of the snowman’s face; you’ll also need to
make it small enough to fit (see above for
how to move and resize). We now need to
get the nose to point in the correct direction;
first, select the Rotate button.

The coloured arcs are handles which we
can use to rotate the cone. (Experienced
users: try pressing r and x, y, or z to get the
same effect.)

STEP 06
Colouring things in
You might have noticed that the carrot nose
needs to look a little more carrot-like. To colour
it in select it (right mouse button again). Now
click on the Material tab on the right-hand
side, then click New and click on the Diffuse
Colour swatch to make the nose orange..

03b

04

Blender is easiest to learn with a separate three-
button mouse. For those of you using a laptop, you
can emulate the third mouse button by going to File
-> User Preferences... -> Input -> Emulate 3-Button
Mouse. You can now hold Left-Alt then press the left
mouse button to rotate. If you are using a trackpad
you might also be able to zoom in and out by pinching
(OS X) or two-finger swiping

NOTE: THREE-BUTTON MOUSE

05

STEP 07
Rendering your masterpiece
Press F12 (Fn-F12 for Mac) to see your
masterpiece. If the camera misses the
snowman, use the middle mouse button
to rotate around your scene and find out
where your snowman and camera are.
Remember that you can move and rotate
the snowman to get it in shot, or even rotate
and move the camera.

STEP 08
Next steps
If you have the time then add some eyes,
buttons, arms, and a hat to your snowman.
Then, to create a complete image, add the
ground (try creating a plane), some trees
(UV spheres on a cylinder) then, finally,
tweet your snowman with the #b3d101
and #3Dami hashtags.

06

08

http://www.helloworld.cc

helloworld.cc64

Snap! is an open-source blocks-based language that runs in the browser.
It’s an ideal progression from Scratch, useful up to sixth form and beyond...

AFTER SCRATCH TRY SNAP!

what category your block should be in, its
name, and the type of block: a command
(procedure), a reporter (function), or a
predicate (function that returns a Boolean).

I find the best way of naming a block
is to write a sentence describing it. So
in the example below, which deletes all
occurrences of a value from a list, returning
a copy of the list without the values
specified, I’ve used almost exactly that (see
‘Defining a block’), defined it as a reporter
since it returns something, and put it in the
Lists category.

You then specify which of the words in
the name are Input names (parameters)
and which are Title text (part of the
name) by clicking on the word; the

parameters can appear before or in-
between parts of the name, not just after
as in most text-based languages. Next,
you give their type; ‘value’ could be any
type, but ‘list’ must be a list (see ‘Defining
block parameters in Snap!’). Finally,
you get to define the blocks that, when
executed, accomplish what your block
needs to do.

In the example (see ‘Creating the code
for the block in Snap!’), this is defined as a
recursive function as no loops or variables
are needed; since it calls itself, as soon as
you have defined the heading (name and
parameters) you need to click Apply, so
that you can drag the updated definition
out of the relevant category.

STORY BY John Stout

n The Snap! screen won’t worry any student used to Scratch, but be ready to show the differences

tarting Snap! (from the University
of Berkeley: snap.berkeley.edu)

after Scratch won’t cause your students
any problems, since the interface and
visual metaphors are identical to Scratch.
Look at the Snap! screen image and while
you’re there, try and guess what the
code shown does; the answer is below.
Snap! borrows a number of features from
Scheme (see ‘Scheme disguised as Scratch’
below) which give it far more power, and
the interface has a number of additional
features which let students accomplish
tasks more easily and quickly.

Building Your Own Blocks
BYOB (Build Your Own Blocks) was
the name of Snap!’s predecessor, and
gives the first hint of what differentiates
it from Scratch.

Right-clicking anywhere in a script area
brings up a menu with the magic words
‘make a block’, and then a dialogue to select

GUIDE SNAP!

If you haven’t seen Scheme, it’s worth
having a look at this descendant of Lisp: it
has simple syntax, but remarkable power.
The Racket system (racket-lang.org) and
Bootstrap (bootstrapworld.org) are both
based on Scheme–like languages, and there’s
a lot of educational material available. See
also mitpress.mit.edu/sicp/ for details on
the book Brian Harvey (Snap! designer) calls
‘the Bible’.

SCHEME

S

http://www.helloworld.cc
http://racket-lang.org
http://bootstrapworld.org
http://mitpress.mit.edu/sicp/

helloworld.cc 65

Useful tips:
n You can use the keyboard editing (see next

section) to find a block; this is often a quick
way of finding one particular block.

n Right-clicking a block often gives you the
chance to relabel i.e. change it without
having to delete it and then insert the
correct definition.

n If you’re in the middle of defining a new
block and realise that you need to make
another new block, you can keep that
definition active, right-click on a blank area
within it, and select ‘make a block’.

n In the Variables category there’s a block
called [script variables (a)], which lets you
create one or more variables with a scope
limited to that particular script. Click the
variable name to rename it, and click to add
a new variable and remove the last one.

Keyboard entry, tables, debugging
It’s often suggested that the drag-and-
drop interface holds students back, so
one of the many improvements made to
the interface in Snap! lets you use the
keyboard to enter your programs.

First, make sure the feature is enabled
by clicking on the Tools menu (the cog
icon) and then Keyboard Editing; enable
the Table support and Visible stepping as
well, since we’ll look at those later. If you
can’t see any or all of these, you may not
have the latest version (currently 4.0.9.2),
or you could try Shift-clicking Tools to
show additional options.

Now Shift-click anywhere you could
normally drag-and-drop a block, and start
typing when the white horizontal bar
starts flashing. As you type, the blocks
displayed on the left will match what
you’ve typed, so ‘f o r e’ will just leave the

‘forever’ block, outlined in white. Press
Enter; this block is inserted into your
script space, and the bar moves inside
the block. Now type ‘m o v’ to get the
[move () steps]; press Enter and this time
the highlight is in the number of steps
to take. Press Enter, type the number of
steps, and press Enter again. Now move
the cursor down, type ‘t u’ then Enter (or
cursor down + Enter). Press Enter, type

RIGHT-CLICKING ANYWHERE IN A
SCRIPT AREA BRINGS UP A MENU WITH
THE MAGIC WORDS ‘MAKE A BLOCK’

“

the number of degrees, and press Enter
again. Finally, Ctrl-Shift-Enter will execute
the current block.

You can press Tab or Shift-Tab to move
around the blocks on the screen and then
edit; the space bar shows you a menu
of options, such as in the (item [/1/last/
random] of []), and Escape stops editing.

If you’ve enabled Table support,
then creating a list that contains other
lists will display as a table, rather than
the conventional ‘list of lists’ format
(see ‘Table display in Snap!’). You can
manipulate the column width and row
height in this view by dragging the
column/row labels; by manipulating the
list data using the functional programming
facilities introduced later in ‘Scheme
disguised as Scratch’, you can swap
columns, manipulate the values in
columns, and so on. The documentation
available on the Snap! website for tables
shows you how to accomplish some of

the image manipulation (Photoshop-like
filters) exercises, popularised by Mark
Guzdial in his Media Computation course.

If you’ve enabled Visual stepping, then
you may have noticed a small slider in the
menu bar. Drag it all the way over to the
left, and you have single stepping through
your code. The middle control button
is used to step to the next evaluation;
incidentally, using this on the example
code shows up an inefficiency! Move
further to the right, and you trace through
your code at a speed you control.

This has been a rapid introduction to
Snap!. Subjects not covered include:

n Connecting to external devices e.g.
Lego NXT or Arduino

n Saving your projects

n Connecting to the Snap! cloud (one
missing feature is publicising your
projects in a gallery, as Scratch does)

n Click on the word that will be a parameter, change it to an input name, and specify its type.

n Drag-and-drop code blocks in exactly
the same way as normal in Snap!.

http://www.helloworld.cc

helloworld.cc66

n Systems based on Snap! like Edgy
and Cellular for graphs and cellular
automata, and Beetle Blocks/
TurtleStitch for 3D printing and
embroidery.

The Snap! website has a lot more
documentation, and there are resources
on the CAS site as well. Enjoy yourself!

Scheme disguised as Scratch
The website describes Snap! as combining:

Scratch’s
n Drag-and-drop interface
n Visual metaphors for loops,

conditionals, etc.
n Easy animation tools

with:

Scheme’s
n First-class procedures
n First-class lists
n First-class objects (sprites)
n First-class continuations

More simply, as described by Brian
Harvey (one of Snap!’s designers), ‘Snap!

is Scheme disguised as Scratch’.
When run, the code in the Snap! screen

image repeatedly runs a random action
from the list of four actions, and so the
sprite does a drunkard’s walk across the
screen. Was it obvious? Conventionally,
you’d do this by picking a random number,
testing it in a series of [if then else] blocks,
and executing one of the move/turn

commands; imagine the changes you’d
need to add a pen up/down command.
By allowing procedures (either built-in or
user-defined ones) to be used in the same
way as other data, as first-class items,
we can:

n Assign them to variables
n Store them in lists
n Pass them as parameters to procedures

(see map and filter below) or
n Return them as values from functions

and we gain immeasurable power by
doing so.

This is functional programming, but
Snap! makes this (almost) as easy-to-use
as any other programming technique by
using all the visual metaphors students

THE SNAP! WEBSITE HAS A LOT MORE
DOCUMENTATION, AND THERE ARE
RESOURCES ON THE CAS SITE AS WELL

“

are used to. The only thing we have to do
is to ‘ringify’ the commands, which stops
them being evaluated too early.

Snap! allows you to import a standard
library. This includes ‘map’, to return a
list that’s had a function applied to every
element of another list e.g. (map (square
[]) (list 1 2 3)) returns (list 1 4 9)); ‘filter’,
which returns a list of those elements of
another list that satisfy a function, e.g.
(select (even? []) (list 1 2 3 4 5 6 7 8))
returns (list 2 4 6 8). Furthermore, you
can examine the code for these functions,
as they’re built using standard Snap!
commands and functions.

Most of them don’t have any loops, so
goodbye, off-by-one errors! They’re also
shorter, and so more easily understood
and verified than their conventional
equivalents would be.

n Here we define the name of the new block, its category,
and whether it’s a command, function, or predicate.

GUIDE SNAP!

http://www.helloworld.cc

helloworld.cc 67

http://barefootcas.org.uk/
http://barefootcas.org.uk/

helloworld.cc68

STARTING A MAKERSPACE

Talk to students
Student involvement is key to

the success of this space. Ask students
what a makerspace looks like to them. The
students need to feel like they are invested
in the process from the very beginning
to take ownership of the makerspace. As
an educator, you will discover what the
students are passionate about, and will be
able to tailor the makerspace to them.

Rally the staff
For a project like a makerspace,

it’s crucial to have the support of other
teachers and administration. They can
help you raise funds, deal with any
administrative bumps in the road, and
anything else that comes up. Makerspaces
are about building a community of makers,
and you want the entire staff to be part of
this process.

Find a space
Finding space can be tough in

schools. Makerspaces are great because
they are so flexible; they will fit any space
if you’re creative enough. One word of
caution: don’t place the makerspace
behind a locked door. A makerspace
should be accessible to students all
of the time.

Start designing
Now that you have a space, you

will need to design it. Again, this is where
student ownership is key. Have students
draw their ideal space. Have them talk
about colours, seating, charging stations,
work areas, and so on. These designs will
come in handy when it comes to funding,
and the students will really take pride in
using a space that they designed.

Raise funds
Changing an entire space can

be costly. Start by looking at government
grants and donations from local
businesses. Large local companies often
love to support STEAM work at schools,
and this is a great way for them to help.
Fundraisers in the school are another
great way to raise the money. you need.

10 TIPS

1 4

10
TIPS

Creating a makerspace can be a pretty daunting task, but Nick Provenzano, author of Your Starter
Guide to Makerspaces, is here with ten vital tips to get you started in the maker movement…

2

3 5

FOR A PROJECT LIKE A MAKERSPACE,
IT’S CRUCIAL TO HAVE THE SUPPORT OF
OTHER TEACHERS AND ADMINISTRATION

“

http://www.helloworld.cc

helloworld.cc 69

Parents love to support new projects that
help their children.

Don’t spend it all
People think they have to spend

all of the money they get for a space right
away. This is not true. You always want
to save money to be used as needed
for student projects. Students can pitch
projects to staff and get funding for their
own work in the space.

Let students
have fun

Once the space is up and running, it’s
important not to over-schedule events or
take up the space too much. You want a
free-flowing space that allows students
to come in and make when the mood
strikes. Let the students try out the new
equipment and take risks. They will have
fun and will really embrace the makerspace
as their own.

Review your
curriculum

This one is not nearly as fun as the
others, but it’s very important. Once
the makerspace is established, how will
teachers adjust their instruction to allow

for a more inquiry-based curriculum? This
allows for students to use the makerspace
to create projects and bring them to class.
The ultimate goal of a makerspace is to
become a seamless part of the school.
Adjusting the curriculum to encourage
more creation is a way to do that.

Be OK with failure
It’s very important that everyone

involved is ready to embrace failures.
Makerspaces need to be a special place
where failures can be celebrated as
learning moments. Let students and staff
fail in the space as they try new things,
and let everyone know that failure is proof
that they are learning.

Make connections
One of the many things that

make makerspaces so great is the
maker community. There are makers all
over the world and it’s easy to connect
with them. If you are on Twitter, follow
#MakerEd to see the great things
others are doing and reach out with
any questions. The collective group
of makers online have a wealth of
knowledge. Tap into it and, eventually,
you will be the one offering advice to
others who need help.

7

9

10

8

6

Nicholas Provenzano is a high-school
English teacher, author, speaker, and
consultant. He has been featured on CNN.
com, Education Week, The New York Times,
and other media outlets. In 2013, he was
awarded the Technology Teacher of the Year
by MACUL and ISTE. Nicholas is also a Google
Certified Innovator, Raspberry Pi Certified
Educator, and a TEDEd Innovative Educator. His
new book, Your Starter Guide to Makerspaces
(helloworld.cc/2iyoYUx), was a best-seller
and can be found on Amazon.com. Find him
on Twitter at @TheNerdyTeacher.

These steps do not encompass everything
it takes to get a makerspace up and
running smoothly, but they are a great
start for those looking to get involved in
the world of making. You can find more
detailed info and resources in Your Starter
Guide to Makerspaces. Good luck and
happy making!

http://www.helloworld.cc
http://helloworld.cc/2iyoYUx
https://twitter.com/thenerdyteacher?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

helloworld.cc70

How do students design models to be 3D printed?
The models that students design are exported as STL
(STereoLithography) files. These are the files that students will also
download online.

The exported STL file is loaded into another program that
works out how to divide the object into layers, a process known
as slicing.

Cura, a free program from Ultimaker, is one of the most popular
(helloworld.cc/2jkXJ1K).

The output of this process is a G-Code format file which is
read by the printer. Some 3D printers accept files directly; others
require you to export the file to an SD card, which you then insert
into the 3D printer.

How long does it take to learn 3D printing?
According to the DfE: “Many of the project teachers reported that
it took a few months to become familiar enough with the printer
and associated software to use it successfully and confidently in
teaching. Integrating use of the 3D printer into the curriculum proved
most successful with self-confident teachers who were passionate
about their subject, and not afraid to experiment and innovate.”

Are there free training resources?
There are some good online training resources
for learning 3D printing. “How To Use A 3D
Printer” by ALISON (helloworld.cc/2k3sXh7) is a
respected free course. Lynda offers
a more detailed course, called “Up and Running

with 3D Printing” (helloworld.cc/2jJgf3D). Lynda charges a monthly
subscription, but you get 10 days free, plenty of time to view just the
one course.

3D printing is revolutionising art, science, and medicine, but can it do the same for teaching
computing and digital making? CoderDojo mentor Richard Hayler investigates…

3D PRINTERS

GUIDEBLUFFER’S

BLUFFER’S GUIDE TO

What is 3D printing?
3D printing is a manufacturing process which
produces solid objects from digital 3D models. It’s
called “additive manufacturing” in industry. There
are several types of 3D printing techniques, but the
most common method is to extrude molten filament

(a plastic-like substance) to build up a model in layers.

What can students make with a 3D printer?
Students can create 3D-printed objects using design software,
or they can download templates and use them as part of
their studies.

A good example is the GB3D Type Fossils (helloworld.cc/2iyazN3)
This free collection of templates contains 1,800 fossils from
British museums.

History students have also printed working models of
trebuchets, and design students develop their own versions of
items they might own (such as phone cases or tablet stands).

How big can 3D-printed objects be?
For practical, time-saving and economic, reasons 3D printed
objects tend to be less than 25cm square.

What software will I need?
Students can use 3D CAD (Computer-Aided Design) software to
examine and design models for 3D printing.

Many schools already use SketchUp (helloworld.cc/2jVN6RV)
to make 3D designs. Blender (helloworld.cc/2iLclZA) is another
solid option.

SketchUp Make is free and comes with handy templates to
help ensure that designs are the right scale.

http://www.helloworld.cc
http://helloworld.cc/2jkXJ1K
https://twitter.com/thenerdyteacher?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
http://helloworld.cc/2jVN6RV
http://helloworld.cc/2iLclZA

helloworld.cc 71

Can I use the 3D printer across
the curriculum?

Just like all digital skills,
3D printing should be an
option for any ‘making’
project: design and print
a model of the Grand

Canyon for geography, create various prisms
for mathematics, recreate a castle’s turret for
history, or produce aerodynamic stomp rocket
fairings in science. And, of course, every design
you provide for the printer can be an exploration
of engineering and materials science.

Do 3D printers help teach STEM?
3D printers entered schools in the Design
and Technology (DT) departments, so there’s
a tendency to think of it in design terms.
However, a DfE report in 2013
(helloworld.cc/2iDYbX2) found “considerable
potential” for use in a range of STEM subjects.
You can use 3D printers as a “link between
mathematics, design, and physics.”

How much do 3D printers cost?
Prices vary, depending on
what type and size you buy,
but it’s a large outlay. Schools
can purchase a quality
printer that can produce

15cm objects for about £800. Larger, top-end
machines cost £1,000 or £2,000. Running
costs need to be taken into account.

What are the running costs?
The main cost is the filament. Typical costs are around £25 for 1kg
of filament. This amount makes, unsurprisingly, 1kg of 3D-printed
objects. A MakerBot test produced 392 chess pieces from 1kg
of filament (helloworld.cc/2iyhg1q). How much filament is used
for a given print job will depend on the size and amount of solid
material used in the design. Most software packages offer some
idea of how much filament you are using.

Can I move a printer between classes?
3D printers are generally light enough to be picked up and moved
around. But they can be fragile, so they will need to be handled with
care. In general, we’d advise keeping it in a single, secure location.

How secure are they?
3D printers are small enough to pick up, and expensive enough to go
wandering. Theft is a concern; be sure to keep it under lock and key.

What do students think?
It’s a hugely exciting area. Children love to explore and create, and
3D printers enable them to turn ideas into creations.

The process of 3D printing lends itself to the concept of iteration
(design, prototype, evaluate, and redesign). It encourages higher-
level thinking, and a more realistic experience of design and
manufacture in the real world.

Is it an employable skill?
Companies have been using 3D printing since the 1980s and usage
is on the increase. PricewaterhouseCoopers surveyed 100 leading
manufacturing companies and found two-thirds already using 3D
printing (helloworld.cc/2iyiD0j). So it’s a handy, if still quite rare, skill
for students to acquire.

n Printed objects are sculpted one layer at a time.
The process is slow, but hugely rewarding for students

3D PRINTERS AND THE CURRICULUM

http://www.helloworld.cc
http://helloworld.cc/2iDYbX2
http://helloworld.cc/2iyhg1q
http://helloworld.cc/2iyiD0j

helloworld.cc72

Any health and safety issues?
3D printers are safe. However, as with anything that has moving
parts, there’s always a risk of people getting fingers trapped. 3D
printers move quickly, so hands should be kept out of the print zone
when the device is operating.

Also, the print head and bed do get hot, typically 210
degrees and 60 degrees respectively for ABS and PLA
filament. While they aren’t a fire risk, we wouldn’t advise
putting paper or other flammable materials nearby.

If the printer is going to be used by children, then a
machine like the CEL Robox might be a good idea, as
it has a completely enclosed print zone and a door that
locks when operating.

Most filament materials don’t give off any harmful fumes, but
it’s best to use them in an open, well-ventilated area, especially
if you are using the 3D printer for extended periods.

Can students use one unsupervised?
We would advise you to only allow supervised access to 3D
printing, or to take direct control of the printing. 3D printers run
very hot, have moving parts, and are fragile and easily broken.
Caution is recommended.

How noisy are they?
There’s no getting away from it: 3D printers are noisy, especially
models where the print nozzle is exposed. Even a single device
can be distracting. You’ll have to shout over multiple 3D printers
being used at once.

Some of the enclosed printers are quiet enough to be left
working away at the back of a classroom, but the noise from
those without side panels will be distracting. Make sure you take
noise levels into account when purchasing a model, and get one
with a sealed unit.

How long does a 3D print job take?
The slow speed of 3D printers is a commonly reported frustration
among users. You can print a small trinket item in 20 minutes on a
fast, low-resolution setting. But it’s wiser to plan at least an hour
for each 3D-printed object.

With a class of students, it’s wise to try to manage their (and
your own) expectations. Consider forming study groups with
three or four children.

GUIDEBLUFFER’S

There’s no getting away from it: 3D
printers are noisy, especially in models
where the nozzle is exposed.

n This string-like substance is known as “filament” and is the material used to 3D print objects.
Large objects use up a lot of filament, so it’s a good idea to keep objects as small as possible

n 3D printers have hot nozzles and moving parts,
and are noisy. In general, it’s best to get one that
keeps its moving components inside a box

http://www.helloworld.cc

helloworld.cc 73

What are the most common problems?
Things get stuck and jammed frequently. Typically, this is the
filament, which can clog up the print head nozzle. Most machines
will come with tools for removing lodged filament. It helps if
teachers have a ‘maker approach’ and are prepared to unclog
nozzles without calling in for a service team.

What kind of filament should I use?
The most popular filaments used for 3D printing
are ABS (Acrylonitrile Butadiene Styrene) and PLA
(Polylactic Acid).

ABS is prone to shrinkage as it cools, leading to
warping of the lower parts of the printed object.

PLA is plant-based and, therefore, biodegradable. It’s also less
smelly, but is stickier and leads to more clogged nozzle problems.

Where can I find objects to 3D print?
There are some websites where makers can upload and share
their designs. The most well-known and largest are Thingiverse
(helloworld.cc/2k1QS0n) and Yeggi (helloworld.cc/2jkQWoB).

How should I choose the best one for my school?
For an unbiased review of printers, this 3D Hubs best printer guide is
a good place to start (helloworld.cc/2jGSXvb).

Look for a “makerspace” in your local area; these are clubs
springing up around the country, that offer communal access to
equipment like 3D printers.

The people at a makerspace will have experience with using 3D
printers, and be able to offer you advice on buying and using a 3D
printer for school. They can also offer you a hands-on experience
of 3D printing and potentially some training.

Is 3D printing worth it?
3D printing technology is becoming more mature all the time, but
there remains an element of fiddliness to the printers. Unreliability
is one reason they haven’t become more widely used by the
general public.

You will almost certainly have to troubleshoot problems and
unexpected results from time to time. The end results are hugely
rewarding, though, and it’s one of the most engaging aspects of
modern technology. If you take the 3D printing leap of faith, you
won’t regret it; your students will thank you.

n Students can use 3D printers to design and build
real-world objects like this vase

n Students use 3D printers to iteratively build and test components, like these working fans

http://www.helloworld.cc
http://helloworld.cc/2k1QS0n
http://helloworld.cc/2jkQWoB
http://helloworld.cc/2jGSXvb

helloworld.cc74

YOUR QUESTIONS
ANSWERED

Controlling or simulating
physical systems is a

requirement in Key Stage 2. Physical
computing is concerned with real-
world hardware, rather than just
manipulating pixels on a screen.

It’s about teaching kids the
“physical mechanics and real-life
applications of devices” rather than
just the virtual world of software. It’s
hands-on, so more fun for students,
but it’s also practical.

It’s also a lot tougher for teachers
to teach than software. There’s the
expense of buying the physical kit,
and you need time and resources
to learn how to use the equipment
yourself (before teaching the
blighters how to use it).

It’s a challenge, but there is a lot
of help out there. Small, inexpensive

What’s the best way to start
teaching physical computing?

Teaching computing and digital making requires
a whole new set of skills, and understanding the
various options and requirements can be incredibly
challenging. Don’t be afraid to put your hand up and
ask us anything…

devices like the BBC Micro:bit
and Raspberry Pi are inexpensive
pieces of hardware designed to
make it easier to get physical
computing into the classroom.
There are also lots of teaching
resources for both devices.

Start by using a simple
program like Scratch to flash the
LED lights on a Micro:bit board
(follow this teaching resource:
helloworld.cc/2iAUS7I). Or set up the
operating system on a Raspberry Pi
(helloworld.cc/2jyr8HN) board.

After that, you keep learning from
the teacher resources on how to
build simple electronic circuits. You
can make traffic lights and buzzer
circuits. They allow pupils to engage
with wearable technology, robotics,
and other forms of digital making.

FAQs

Q

A A

This FAQ is made up of genuine
teacher questions. If you’ve got a
question you can ask us on Twitter
via @helloWorld_Edu or using the
#HelloWorld hashtag. Alternatively,
email us (contact@helloworld.cc)
with ‘Teacher Question’ in
the subject line.

GOT A QUESTION?

Oh no! You can still do loads with these trusty
Pi devices. You can still run the latest version

of the operating system and connect to external
hardware using the pins on the board.
They run a little slower than the newer models, but
they’re still great for learning physical computing.

They are particularly good for use in electronis
projects (see the “what’s the best way to introduce
robotics” question on the next page).

The only drawback is that you can’t connect the
latest HAT hardware equipment to these older boards
(they don’t have enough pins). But that would be an
extra expense anyway.

Your students can use them to learn programming
and physical computing. You can attach electronic
components to the pins on the board. Take
a look at the Raspberry Pi Teacher’s Guide
(helloworld.cc/2jZllYE).

You could even use the old boards to create
wearable projects.

Q I’VE DISCOVERED
A BUNCH OF OLD
RASPBERRY PI
MODEL B BOARDS.
SHOULD I THROW
THEM OUT?

http://www.helloworld.cc
http://helloworld.cc/2iAUS7I
http://helloworld.cc/2jyr8HN
https://twitter.com/HelloWorld_Edu
mailto:contact%40helloworld.cc?subject=
http://helloworld.cc/2jZllYE

helloworld.cc 75

What, exactly, is computational
thinking and why is it so important
for students to understand?

It’s a significant term at
the moment, and you’re

totally right to ask what it’s all about.
Indeed, “computational thinking”
is at the start of the National
Curriculum, and it weaves in and out
the whole programme.

“A high-quality computing
education equips pupils to use
computational thinking and creativity
to understand and change the world,”
says the DfE.

Like many high-end concepts,
Computational Thinking is surprisingly
hard to pin down when you talk
about it. Jeannette Wing’s original
definition was: “Computational

code. It may just be delaying the
inevitable, though.

Another option is to move into
physical computing quickly. Either
introduce a Micro:bit or a Raspberry
Pi into the classroom. This hardware
replaces the visual stimulus of
Scratch characters and kid’s see
Python doing stuff.

You can also use Python inside
Minecraft on a Raspberry Pi. This
approach lets children use Python in
a 3D visual world. See this “Getting
Started with Minecraft Pi” resource
(helloworld.cc/2iIkKtr).

thinking is the thought processes
involved in formulating problems
and their solutions.”

Computational Thinking is
something that humans do;
not machines.

Broadly speaking, it’s a collection of
skills that enable students to interact
with computers. It includes the ability
to think logically and understand
algorithms. At higher levels, it
includes concepts like abstraction
and recursion.

The UK Forum for Computing
Education has this PDF document. The
PDF explains Computational Thinking
in more detail (helloworld.cc/2iIhFcW).

In many respects, both are small devices
trying to solve the same problem. They both

make it affordable and easy to introduce children to
physical computing.

They work very differently, though. With a Micro:bit,
students create programs using a web interface on a
regular computer. These are then transferred to the
Micro:bit using a USB cable.

The Raspberry Pi is a complete computer on a single
small board. It has an SD Card for storing files on and can
be connected to a display. You can plug in a keyboard and
mouse to a Raspberry Pi, and students use an operating
system similar to that on Mac or Windows computers.

Q

A

A Key Stage 3 requirement
is to “use 2 or more

programming languages, at least one
of which is textual.” This condition
almost certainly means adding a
second language on top of Scratch.

Typically this second language
is Python. Compared to other
languages, Python is easy to
understand and friendly enough to
introduce to 11-year-olds. It’s not
that difficult; students just find it a
bit dull. Having spent a lot of time
dragging highly visual blocks around
your students will find the dusty
world of text-based programming a
huge letdown.

There are lots of approaches to
make Python more exciting. One is to
use an interim language, like Google’s
Blockly (helloworld.cc/2jwBPuZ).
This program is like Scratch, but it
converts visual blocks into Python

 Moving on from Scratch to a text-
based programming language is a
big jump. What is the best way of
easing the transition for children?

Q Q

A
A

Computational thinking
Teach children the thought processes
they need to interact with computers

 HOW IS A MICRO:BIT
DIFFERENT FROM A
RASPBERRY PI?

http://www.helloworld.cc
http://helloworld.cc/2iIhFcW
http://helloworld.cc/2jwBPuZ
http://helloworld.cc/2iIkKtr

helloworld.cc76

HTML (Hypertext Markup
Language) and CSS

(Cascading Style Sheets) are the two
languages used to create websites.
They’re both text-based languages,
and there’s a real temptation to
use them instead of a language like
Python to meet the “text-based”

remit of the national curriculum.
Don’t be fooled into thinking

that HTML or CSS is an adequate
substitute for Python. You can’t teach
computational thinking using HTML.
It’s better to move straight from a
visual environment like Scratch direct
to Python.

A

Should I teach HTML and CSS
before moving to Python?

Q

Q

WHAT’S THE BEST WAY TO INTRODUCE
ROBOTICS TO MY CLASS?

Q

Robotics is a fantastic project to
present.: if you can handle the

complexity of the equipment. Robots are
exciting to build and highly entertaining.

Robots use two types of motors: DC
Motors and Servos. You’ll normally need
a Raspberry Pi and a separate piece of
hardware, known as a Driver Board to control
the motors

DC (direct current) motors move robots
around. When you supply power, the motor
will start turning until it’s switched off.
Reversing the polarity of the supplied voltage
will reverse the direction. You attach two
motors to a chassis (this can be anything box

shaped) and use Python or Scratch to turn
the motors on and off. This makes the robot
move forwards, backwards, left and right.

Servo motors are controlled to move to a
precise angle and normally have three wires.
Two wires supply power, while the third
is the control line. These are used to build
robotic arms.

There are lots of robotics kits around,
and it’s certainly worth buying a kit rather
than starting from scratch. A cost-effective
way to start is using a CamJam EduKit
#3 kit (£18, helloworld.cc/2jZGzG1).
Maplin’s sells a Robotic Arm Kit for £29
(helloworld.cc/2iQwqxD).

There’s not much between
the two versions of Python.

Unfortunately, the one command
students use the most: “print” works
differently in each version. So most
programs created in Python 2 are
not compatible with Python 3, and
vice versa.

The good news is that apart from
that, they’re very similar. So no matter
which version of Python you choose.
Your students aren’t going to end up
with a vastly different understanding of
Python (or coding in general).

A few years ago we’d have
suggested you stick with Python 2, but
these days more and more resources
are written using Python 3. Micro:bit
uses a full reimplementation of Python
3, and The Raspberry Pi Foundation
produces teaching resources in Python
3. So while you may find a lot of old
code around in Python 2, we think you
should start with Python 3.

A

Q

A

Python charmer
Python is the easiest programming language
to learn after Scratch

Should we be
teaching our
pupils Python 3
or Python 2?

FAQs

http://www.helloworld.cc
http://helloworld.cc/2jZGzG1
http://helloworld.cc/2iQwqxD

helloworld.cc 77

Okay, don’t panic. We
blame Hollywood for a

lot of the mystique surrounding
the world “algorithm” (it brings
to mind Iron Man creating AI
suits or Mark Zuckerberg creating
super-secret formulas).

The reality is a lot less glamorous.
It’s just doing something one step
at a time.

An algorithm is just the sequence
of precise and unambiguous steps

These are the three
mainstays of computer

programming. They’re also known as
procedure, branching and looping.

The sequence is all about doing
things in the correct order. If you try
to pour water from a bottle before
removing the lid, nothing will come
out. Programs run one line of code
at a time. And some lines of code
require others to come first (you
can’t increase the amount of variable
if you haven’t already created it,
for example).

a computer takes to do something.
You can introduce this idea to
young children using activity
sheets. Typical activities include
finding the way home on a map
(turn left, go forward, turn right,
and so on). Or the steps you’d take
to make a cup of tea (put water in
the kettle, boil the kettle, put a tea
bag in the cup, and so on). Twinkl
has some worksheets you can use
(helloworld.cc/2jwHOjg).

Q

Q

A

A

Start at the beginning
All programs are built up of simple steps of sequence,
selection and repetition. Once you know these basics you
can create all kinds of programs WHAT IS A GOOD

FIRST CLASS
PROJECT FOR
3D PRINTING?

Q

A Start with something small and
straightforward, like a trinket or badge. Give

the pupils a template file in SketchUp that contains
the basic design at the correct dimensions (a 25mm
diameter circular plate, for example), and have them
customise it by adding 3D shapes or text. With an
object that size, you should be able to print at least 6
in a single run, so that the pupils can see the fruits of
their labours reasonably quickly.

Selection is when a program
makes decisions based on available
information (or data). A program
could know the weight of dogs and
say “yip” for small dogs, or “woof” for
big ones. It selects based on the data.

Repetition is, as the name implies,
about repeating actions. A program
could count from 1 to 100. But
instead of writing one-hundred
print statements you’d write one,
and have the program run it one-
hundred times (increasing the
amount by one each time).

 The UK National Curriculum for
Computing refers to ‘sequence,
selection, and repetition’.
What do these terms mean?

How am I supposed to teach
algorithms to five-year-olds?

http://www.helloworld.cc
http://helloworld.cc/2jwHOjg

helloworld.cc78

SWIFT PLAYGROUNDS

echnology is always
marching forward, and

one of the greatest innovations in
recent times is the portable tablet
computer. The iPad in particular
is incredibly user-friendly and
loved the world over, especially by

young people. It makes complete
sense, then, that as the world of
technology changes, the world
of computing education changes
with it. That brings us to this list of
fantastic apps that can help teach
coding on an iPad.

REVIEWS APPS

IN FO

T

FROM Apple | PRICE FREE | URL magpi.cc/2j155Y1

Using iPads in class? Get a boost
with these recommended coding apps

PROGRAMMING
APPS FOR IPAD

wift Playgrounds is Apple’s
own attempt at providing

coding education through an app.
It does this by offering coding
puzzles for you to solve that can be
immediately run on the little 3D cube
world living in the app.

Swift Playgrounds concentrates
more on writing code than moving

S around blocks of code, distinguishing
it from Tynker on this app list. It
also makes the app feel like an
interactive book of coding, which
is a cool aesthetic. Once a student
has completed several puzzles
and challenges, they can have a
stab at actually making some code
themselves without any prompts.

n Apple’s own
coding app

n Learn coding
through puzzles

n Optimised
for touch

QUICK FACTS

HOPSCOTCH
opscotch is possibly one of
the most basic and simple

apps on this list, but that doesn’t
mean it’s too simple to use. Much
like Scratch, it uses blocks of code
to create programs and games in an
attempt to teach programming logic
to students.

There are lots of games and

H tutorials that come with the
app, and there’s also a monthly
subscription you can get (£6/$8),
which adds more tutorials and ideas
on a monthly basis. This includes
examples of currently popular
games, like Pokemon GO, that should
keep students interested much
longer than other similar apps.

n Program with
code blocks

n Comes with lots
of tutorials

n Easy to make
games with

QUICK FACTS

IN FO FROM Apple | PRICE FREE | URL magpi.cc/2j155Y1

http://www.helloworld.cc
http://magpi.cc/2j155Y1
http://magpi.cc/2j155Y1

helloworld.cc 79

CODEA
IN FO FROM Two Lives Left | PRICE £11 / $15 | URL magpi.cc/2j16ga0

his app is a little more
advanced but still has

some of the more interesting, user-
friendly features of the others. It
still lets you make programs and
games, but this time it lets you use
the Lua programming language to
create apps. This code can then be
manipulated through touch (such

T as changing colour or the way a
sound works), and then exported as
an actual app for your device when
you’re happy with it.

There’s plenty of other neat
additions (remote coding, video
recording of how your code works),
and there’s some example projects
to learn from as well.

n Codea lets you
program in Lua

n You can run
programs like apps

n Edit code with
touchscreen
gestures

QUICK FACTS

CODE2GO

here to go once you’re
done with simple block

coding and coding-lite apps like
the others in this list? Code2Go
is a full text editor that lets you
program in all major languages,
including highlighting for the

code that
looks the same
as official
development
environments.
Students who
write code
on here can
then test it
by running
it using the
online service
provided,
which allows
for checking
and debugging
of the code.

It also has a function that lets
you render web pages, making
it a great way for students to
play around with HTML and
website-building.

Wn Write in any type
of programming
language

n Runs code so you
can see if it works

n Can also render
web pages

QUICK FACTS

IN FO FROM Nathaniel Herman
PRICE £2 / $3
URL magpi.cc/2icWPa0

TYNKER
ynker is basically Scratch
for iPad (although you can

access Scratch via the browser
these days); however, it does come
with a lot of extra stuff to make it
worthwhile. As well as being able
to use blocks of code to create
programs and games, there are
built-in games to play that require
students to perform coding tasks
to proceed, as well as over 100
step-by-step tutorials to help
further knowledge in the basics
of programming.

Apps and games made on

T

Tynker can also be shared online,
making it a great way to get
students excited by being part
of a bigger coding community.

n Works like
Scratch

n Teaches coding
through games

n Works with some
smartphone-
connected toys

QUICK FACTS

IN FO FROM Tynker | PRICE FREE | URL magpi.cc/2icWsfC

TYNKER

Hello World
RECOMMENDS

http://www.helloworld.cc
http://magpi.cc/2j16ga0
http://magpi.cc/2icWPa0
http://magpi.cc/2icWsfC

helloworld.cc80

John Stout reviews a book to take you beyond
‘Hello, World!’ in seven different programming
languages, considering each one’s unique
strengths and weaknesses

SEVEN
LANGUAGES
IN SEVEN WEEKS

ruce Tate takes you through
the basics of seven different

programming languages (Ruby,
Io, Prolog, Scala, Erlang, Clojure,
and Haskell) and shows you what
makes each one special. In the
foreword we’re told that ‘Learning
to program is like learning to swim.
No amount of theory is a substitute
for diving into the pool ...’ and that’s
really what this book does: dive in!

At times you may find that
you’re drowning (for example,
there’s no help with installing
any of the languages), but if you
persevere you’ll end up with a broad
understanding, if not a deep one of
any particular language.

Each language is dealt with in
same way, with Day 1 (you’ll need

much less than 24 hours) spent on
an introduction to the language, to
which paradigm(s) it belongs, and its
history. Day 2 is spent introducing
yourself to the language: how you
enter expressions, strings, Booleans,
and so on, and how it handles types
(strong vs. weak, static vs. dynamic).

Day 3 takes you deeper into each
language, and sometimes the pace
takes your breath away, but there’s

lots of self-study questions and
support on the Internet.

As you progress, you start finding
concepts repeated, which really
helps your understanding; if you
haven’t used things like recursion or
pattern matching much, then Day
3 gives plenty of examples across
the languages.

Interviews with designers
One of the most useful parts of each
chapter are the interviews with
either a designer of the language
(Haskell has two, with Philip Wadler
and the CAS chair, Simon Peyton
Jones), or an expert user. You get
to know why the language was
developed (why do we develop
new languages? Don’t we have
enough?), what they consider
important, and often what they
regret and would like to change.

Day 4 is where each language
really comes alive, with substantial
programs showing off the
capabilities of the language.

Finally, you get a summary of what
you’ve learned, and the author’s
views on that language’s strengths
and weaknesses.

You won’t use this book as a
tutorial for a single language, but
as an introduction to programming
languages it’s superb; it would
also make an interesting 7-week
extension course for students.

REVIEWS BOOKS

IN FO

B

BY Bruce A Tate | PUBLISHER Pragmatic Programmers, LLC. | PRICE £21.74 | ISBN 1-934356-59-X | URL helloworld.cc/2jnobYI

Learning to program is like learning to swim.
No amount of theory is a substitute for
diving into the pool...

“

http://helloworld.cc/2jnobYI

helloworld.cc 81

If you’ve been inspired by our cover
feature on Seymour Papert’s legacy,
here’s our guide to the three books that
best capture his vision for education

ESSENTIAL READING:

The 1980 classic on the first years of computer programming
in education. Many of Papert’s ideas here, such as thinking,
literally walking through code, learning through making, and
how debugging builds resilience are as valid today as they
were revolutionary then.

BY Seymour Papert
PUBLISHER Basic Books
PRICE £11.89
ISBN 978-0465046744
URL helloworld.cc/2jnDi4l

MINDSTORMS:
CHILDREN, COMPUTERS,
AND POWERFUL IDEAS

A visionary text, in which Papert looks at how schooling
would change when children had access to the world’s
knowledge via computers of their own. Sets an agenda for
game-based learning beyond drill and practice and rich,
immersive multimedia.

BY Seymour Papert
PUBLISHER Prentice Hall
PRICE £14.98
ISBN 978-0745016030
URL helloworld.cc/2jnBzMh

Papert recognised that the ubiquity of digital technology
would move the place of learning from school to home, and
that learning at home would be more about exploration and
discovery than instruction and exercises. A helpful response
to questions of how grandparents, parents, and children can
learn and use technology together.

BY Sandra L Emerson
PUBLISHER Addison Wesley
PRICE £43.99
ISBN 978-0201703092
URL helloworld.cc/2jnAFiG

John Stout on Peter Seibel’s interviews with 15
professional coders, discussing how they got
into coding, what they like, and what they hate!

CODERS AT WORK

n this book the emphasis
is on the coder, not

languages, so they each get a
chapter to themselves. You’ll
learn how they got into coding,
what they enjoy about it, and
what keeps them coding (if
they’re still coding). You’ll get a
feeling for the person behind the
language, program, or system,
and some gossip about the other
personalities and languages in the
field; C++ gets a bit of stick here!

It’s particularly nice to see two of
the developers of Smalltalk/Squeak,
the language in which Scratch was
originally implemented.

In each chapter you’re likely to find
something that one of these coders
feels about coding and think “thank
heavens it’s not just me!”. My favourite
is from chapter 8, the interview with
Simon Peyton Jones, when he talks
about being faced with some code
that ‘you wrote yourself but no longer
dare to modify.’

IN FO

I

BY Peter Seibel | PUBLISHER Apress | PRICE £15.32
ISBN 978-1-4302-1948-4 | URL codersatwork.com

Julie-Anne Maisey reviews the BCS
glossary, now in its 14th edition: the most
comprehensive and authoritative reference
of the vocabulary of computing.

BCS GLOSSARY

he BCS Glossary includes
usage guidance and

advice, which acknowledges the
sometimes difficult aspects that
overwhelm computing students.
The glossary deals with jagon in
a way that scaffolds and builds
confidence in the reader: it begins
using more general terms, before
moving on to more specialised and
detailed computing references,
with examples and bold print to
support key words. The glossary is
useful at A level and beyond, but is
accessible to GCSE students, as a
guide to support learning, enhance

revision, and embed understanding
of computing terms.

Figures, tables, and diagrams
support and enhance the text,
increasing engagement. These are
also pitched at an appropriate level
for all ages.

If computing is taught with a
focus on exams, students would
benefit from using this during theory
lessons and as a revision tool.

It’s an important addition to any
academic book collection, that will
no doubt have bookmarks inserted
and corners folded over the years
to come.

IN FO

T

BY BCS Academy Glossary Working Party | PUBLISHER BCS, The Chartered Institute for IT
PRICE £19.99 | ISBN 9781780173269 | URL bcs.org/books/glossary

THE CHILDREN’S MACHINE:
RETHINKING SCHOOL
IN THE AGE OF THE COMPUTER

THE CONNECTED FAMILY:
BRIDGING THE DIGITAL
GENERATION GAP

http://helloworld.cc/2jnDi4l
http://helloworld.cc/2jnBzMh
http://helloworld.cc/2jnAFiG
http://www.codersatwork.com
http://bcs.org/books/glossary

helloworld.cc82

ometimes, programming languages are
characterised as being compiled, interpreted,
or interactive, but I think that this is wholly

misleading. To explain why, I’m going to explore the
implementation of a minimal programming language
based on the early 20th-century mathematician Giuseppe
Peano’s simple but powerful model of arithmetic.

In Peano’s system, integers are represented as finite
successors of zero, and operations are defined with base
cases for zero and inductive cases for non-zero numbers,
much like how we write recursion. We might view
Peano integers themselves as constituting a very simple
programming language. We could define a number as a
sequence of SUCCs ending with ZERO:

number -> ZERO | SUCC number

Thus, the first few numbers are ZERO, SUCC ZERO,
SUCC SUCC ZERO, and so on.

Suppose we want to run programs in this language, to
output the equivalent decimal number. We’ll start with the
first two stages of any language implementation: lexical
and syntactic analysis.

Our lexical analyser will recognise valid letter
sequences, and output values to represent the
corresponding symbol, say ‘0’for ZERO and ‘+’ for SUCC.
For example:

S U C C S U C C S U C C Z E R O +++0

Next, our syntax analyser will input sequences
of symbols and parse them; that is, check that they
correspond to the grammar. As we parse the sequence,
we’ll build an internal representation, also known as an
abstract syntax tree (AST).

Here we might use a very simple linked list for our AST,
with one node for each SUCC. An empty list will represent
ZERO. For example:

Our parser is:

RECORD number IS { number next }

DECLARE tree AS number IS NULL

DECLARE symbol IS <first in symbol sequence>

WHILE symbol !='0' DO
 SET tree TO number(tree)
 SET symbol TO <next in symbol sequence>
END WHILE

OPINION

S

Breaking down the concept of programming languages, using simple maths...

PEANO PLAYER
GREG MICHAELSON PROFESSOR OF COMPUTER SCIENCE

NULL

NULL

NULL

NULL

NULL

NULL NULL

ZERO

ZEROSUCC ZERO

SUCC SUCC ZERO

SUCC SUCC SUCC ZERO

http://www.helloworld.cc

helloworld.cc 83

Greg Michaelson is interested in the design,
implementation and analysis of programming languages,

especially for multi-processors. He has taught programming
for nearly 40 years.

Finally, to implement our language, we could write an
interpreter that starts with the value 0 then iterates through
the AST, adding one for every SUCC node. At the end of
the AST, it displays the final value:

DECLARE value IS 0
WHILE tree != NULL DO
 SET value TO value + 1
 SET tree TO tree.next
END WHILE
SEND value TO DISPLAY

So: +++0 3

Of course, our interpreter is just finding the length of the
list representing the AST.

Alternatively, we could write a compiler to generate
target code that computes the decimal number
from an expression. The compiler always starts by
producing code to print a 0, and then iterates through
the AST, generating an additional “+1” in the printed
expression for every node. Let’s generate BASIC,
my favourite language:

SEND "5 PRINT 0" TO DISPLAY
WHILE tree != NULL DO
 SEND "+1" TO DISPLAY
 SET tree TO tree.next
END WHILE
SEND "\n" TO DISPLAY

So: +++0 5 PRINT 0+1+1+1

Notice that our interpreter and compiler are very similar
in structure: both iterate through the abstract syntax tree,
but where the interpreter does arithmetic directly, the
compiler outputs new code that itself has to be compiled or
interpreted to do the equivalent arithmetic.

We can use this minimal example of language
processing to tease out a number of misconceptions
about programming languages. First of all, any language
may be compiled or interpreted: these are properties of
implementations, not languages.

Secondly, we have deliberately built two-stage language
processors. The common front end inputs text and builds
an AST, and the back end directly executes the AST, or
generates code from it. But we haven’t specified where
the input for the front end comes from. Either language
processor might be called from the command line with a
file argument, sit in a loop taking input directly from the
keyboard, or be invoked within an IDE. Thus, a language
is not in itself batch or interactive: these are properties
of environments.

Program in
source language

Lexical analyser

Symbols

Syntax analyser

Internal
Representatior

Interpreter Code generator

Outputs Program in
target language

Inputs

n FIG01: Interpreter and compiler phases

http://www.helloworld.cc

helloworld.cc84

We talk to Code Club’s Clare Sutcliffe to find out how far
Code Club has come and what’s in store for 2017

CODE CLUB: DIGITAL MAKING
he success of Code Club, a network
of after-school clubs that help

students learn computer science through
fun activities, is due in no small part to
the hard work of both volunteers and
its co-founder, Clare Sutcliffe. There are
over 5,000 Code Clubs in the UK alone,
and more start every day. With over
4,000 Code Clubs outside the UK in 120
countries, Clare recently visited Hong Kong,
Australia, and New Zealand to find out how
clubs in other countries operate, and to see
if any improvements were needed:

“I was looking for differences in the way
Code Club was received by children in
different countries,” she tells us. “Generally,
the clubs were very similar, which means
that what we’ve created is scalable. There
are subtle differences, but we work with
particular partners to accommodate their
needs in a sensitive way.

“We don’t want to force people into
impractical teaching situations.”

With Australia changing their IT
curriculum, and New Zealand introducing
computing in 2018, Code Club is well-
placed to handle the surge in interest.
Local teams are crucial to enabling this:

n Code Clubs have proven to be massively
popular in Australia, although clubs
aren’t always this big

T

Clare recently toured Code Clubs in other
countries, to see their day-to-day operations:

“I visited Hong Kong, one of our most recent
Code Club partners. There’s only a small
number of clubs there at the moment, but in
2017 they’re planning to expand. We visited
local schools on the large social estates, where
they have very little in terms of resources. This
means any volunteers are welcomed with open

arms. We saw the classroom setups and talked
to the teachers about when they could start;
we literally set them up while we were there! By
Saturday morning, we had a little Code Club set
up in a company office.

“No matter where you are in the world, the
core of Code Club stays the same: children
learning about technology by making things.
That remains the same, regardless of what
language you speak.”

INTERNATIONAL ADVENTURES

FEATURE

n Clare Sutcliffe is the co-founder of Code Club and
Executive Director at Raspberry Pi

http://www.helloworld.cc

helloworld.cc 85

“The Australian team travel the country
training teachers, using a course similar to
Code Club’s, then encourage them to set up
their own club. It seems to be working well:
one school had 90 children in one Code Club,
and now run it three times a week!” Clare
adds that many of the schools she visited
were in underprivileged areas, which makes
spreading the Code Club mission all the
more important.

Looking ahead to 2017, Code Club’s
priority will be worldwide expansion. “We’re
going to be welcoming new partners,” Clare
says. “We’re looking at countries interested
in Code Club that we can have the most
impact on. Translating material into a wide
range of languages is important, especially
the five most spoken languages in the world.

“We welcome help from volunteers here; if
materials are available in different languages,
we can widen access to them. It would be

great to see volunteers from all around the
world taking on our projects and starting a
new Code Club.”

It’s easy to set up a Code Club account to
get all the resources you need; all you need
after that is a venue, and enthusiasm for
teaching children about coding and digital
making. Clare explains:

“Register your club on the website and
we’ll send you new, exciting things that we’re

working on. You can update your club details,
and see which countries have a Code Club
community up and running already. Discover
what it takes to start a individual club at
CodeClubworld.org.”

Ultimately, it seems that all it really takes is
a little passion for the subject and a desire to
teach the next generation vital digital skills,
furnishing them with the tools they need for
their future careers and opening up a whole
new world of possibilities.

IF MATERIALS ARE AVAILABLE IN
DIFFERENT LANGUAGES, WE CAN
WIDEN ACCESS TO THEM

“

CODE CLUB
IN NUMBERS

IN THE UK

5000+
CODE CLUBS

IN THE REST
OF THE WORLD

4000+
CODE CLUBS

CODE CLUBS CAN
BE FOUND IN

120+
COUNTRIES

IN CODE CLUBS
WORLDWIDE

125,000
CHILDREN

PROJECTS TRANSLATED TO

20
LANGUAGES

helloworld.cc 85

n Students get excited over digital making –
being able to be creative and learn about
technology at the same time

http://CodeClubworld.org
http://www.helloworld.cc

helloworld.cc86

Are you a teacher interested in setting up a Code Club in your school?
Find out how simple it is to get started…

START A CODE CLUB
IN YOUR SCHOOL

t’s easier than you think to run a
Code Club yourself: you don’t need

existing coding skills, just a can-do attitude
to get stuck into learning alongside your
students for an hour a week!

If you haven’t heard about Code Club, it’s a
UK-based non-profit organisation offering free
learning materials and support for teachers and
volunteers running after-school coding clubs for
children aged from nine to eleven.

Code Club’s specially designed projects
offer structured and fun content for the
clubs. The projects are step-by-step guides
for children to follow to create animations,
games, websites, and much more. Children
build up their programming skills as they
move through the projects. There are also
challenges to provide opportunities to apply
what they’ve learnt.

Caroline Harding, a Year 4 teacher who
helps to run a Code Club at her school in

Croydon, told us about the benefits the
club has brought the children. “Making
Code Club available to the children in our
school has helped tremendously with their
confidence and engagement in coding and
computing in general,” Caroline says. “It
taps into their problem-solving skills and
enables them to develop critical thinking
skills. Programming and coding is an area
of the curriculum that many staff can find
intimidating. Knowing that the children have
some experience of the program can help
ease some anxieties and enables that ‘have
a go’ attitude!”

By starting a club at your school you’ll be
joining a huge community of teachers who
do the same thing: around 50% of Code
Clubs are run by teachers.

If you’re considering getting a Code Club
started, we have come up with a few tips
to help you.

STORY BY Emma Norton

n There’s no cost involved in
starting a Code Club: it’s free for
schools and the kids who attend

FEATURE

I

Running an after-school Code Club can help you
to develop confidence to teach the computing
curriculum, and to integrate computing into your
everyday lessons.

If you and your colleagues are keen to get
some additional, more formal training, you
may be interested in Code Club’s Teacher
Training courses. There are three modules on
offer, focusing on ‘Computational Thinking’,
‘Programming and Networks’, and ‘The Internet’.

Many of the sessions are now free for
teachers, so if you’re interested, you can make
an enquiry with the Code Club team by emailing
hello@codeclubpro.org.

TACKLING
THE COMPUTING
CURRICULUM

http://www.helloworld.cc
mailto:hello%40codeclubpro.org?subject=

helloworld.cc 87

Register your club online
To access Code Club’s project materials,
you will need to register online. You can
sign up as a Code Club Host by visiting
jumpto.cc/teachers, making sure to use
your school email address so we can
validate you as a teacher.

Once you’ve entered your details,
you’ll be able to select the option to run
the club yourself. Your club will then be
automatically activated and you’ll have
immediate access to all Code Club’s
online resources.

Code Club have projects in three
different coding languages: Scratch, HTML/
CSS, and Python. Beginning with Scratch
is recommended, as this visual block-based
language provides a great introduction to
key programming concepts. If your pupils
are already experienced with Scratch,
though, you may wish to get started with
HTML/CSS or Python. There are twelve
Code Club projects in each language to
keep your club occupied for a full term.

Your first Code Club
It’s worth preparing for your first Code Club
session by working through the project in
advance, so that you’re aware of all the
instructions and the places where pupils
could possibly get stuck.

Code Club is fun and it offers children (and
their teachers) the opportunity to get creative
with coding. It’s a chance to experiment and
invent, helping children to learn an important
skill for their future, while engaging with
technology and creating things that they can
get excited about.

The model can be adapted to suit
different venues and educational needs.
Most clubs run through one coding project
per week, but some children like to spend
longer perfecting their designs. Some clubs
have pairs of students sharing computers,
and many clubs also like to experiment with
physical computing. You can customise your
club to suit you and the children.

Code Club in practice
There are thousands of teachers running
their own Code Clubs across the country,
and around the world. We spoke to

Matthew Cave, assistant head teacher at
West Town Lane Academy in Bristol, who
told us about his club.

Beginning with Year 5 and 6 students,
Matthew and his team introduced Code
Club’s Scratch projects for all Key Stage 2
children. Now, they have a whole-school
approach, with ScratchJr introduced for
Key Stage 1, and they have invested in
new technology including Lego WeDo
and My Romo.

Matthew says, “We’ve been running
our Code Club for over a year now, with
40 children attending. The club is in
high demand.”

Code Club’s fun approach has provided
other benefits: “It’s amazing to see the
sense of achievement the children get when
they finish their projects. We can really see
them starting to persevere with the tasks
in Code Club, using analytical thinking
to troubleshoot.”

What advice does Matthew have for
teachers who are thinking of starting a
club? “It’s dead easy, so take the plunge!
The children will run with it, so don’t worry
about not being an expert.”

n Code Club allows children to experiment and invent,
using different languages to create their own games,
animations, and websites

http://www.helloworld.cc
http://jumpto.cc/teachers

helloworld.cc88

Find out how one teacher is using robotics to teach computing and other subjects to 11-12 year olds

ROBOTS INVADE
THE CLASSROOM

throng of miniature wheeled robots
whizz around the classroom floor,

much to the delight of the schoolchildren.
Far from being irate, however, the teacher
is delighted that her students are hard at
work on their latest class project.

The school is Kings Glen Elementary in
Springfield, Virginia, USA, where sixth-
grade teacher Lisa Rode has introduced
a group of GoPiGo robots, each with a
Raspberry Pi single-board computer ‘brain’,
to help teach computing and technology.

“I became interested in using Raspberry
Pis in my classroom over the summer in
2014,” she recalls. “I was intrigued by all
of the possibilities that [it] provided for
learning.” This resulted in her applying
successfully for a competitive grant to

start an after-school robotics club.
One of Lisa’s main aims was to teach

students how technology actually works,
rather than just using it as a tool in the
classroom. “Technology has transformed
the way we teach, and students are taught
skills to use it, but students seldom learn
how it works,” she explains. “Teaching
students how to code and to problem-
solve through robotics helps give [them]
necessary skills for their future, as the
number of computing-related employment
opportunities continues to increase.”

Far from already being an expert on
the subject, Lisa had no prior experience
working with electronics or robotics.
“I’ve always enjoyed learning about and
tinkering with new technologies, but I don’t

have a formal background in it. Throughout
this experience, I’ve learned about it
alongside my students.”

Thanks to ample support and resources

A

FEATURE

STORY BY Phil King

n XXXXXXXXXXX

http://www.helloworld.cc

helloworld.cc 89

from GoPiGo manufacturer Dexter Industries,
she found it easy to get started using the
robots. “A group of my students volunteered
to stay in class during lunch, and we learned
about the robots and how to program them
together. It’s important to have good support
and information to help teachers, especially
if computing isn’t part of their curriculum
or background. The support from Dexter
was vital, especially since this was a new
experience for me.”

Engaging students
There was an enthusiastic response from
the schoolchildren when the robots were
introduced into classroom lessons. “The
students were surprised and more motivated
to learn. When I applied for a contest grant
to fund the robots, the students and whole
school were very supportive and excited
about the new opportunities.” After an initial
order of ten robots arrived, and the school
saw the resulting enthusiasm of students,

Lisa was able to obtain extra funding for
further resources.

Using the GoPiGo robots, her class
has done a variety of activities in different
lessons. “One of our major science units
is astronomy. Through the Mars Rover
project, students apply knowledge about
instruments, equipment, and robots used in
real space exploration to create their own,
using the GoPiGo robot as a base. This
allows students to go beyond just learning

TEACHING STUDENTS HOW TO CODE AND
TO PROBLEM-SOLVE THROUGH ROBOTICS
HELPS GIVE [THEM] NECESSARY SKILLS

“

n Disguised as a crocodile, the GoPiGo robot heads for the shade when
the sensed temperature is high, using data from a light sensor

facts about space exploration to being
invested in an exploration of their own.”

It’s not just maths and science subjects
that have benefited, as students have also
used the robots during writing lessons. “For
one lesson, students create a tour of a park

that they create. The GoPiGo then uses the
line-follower sensor to travel through the park,
and the tour is broadcast through a speaker
on the robot. Some student projects were
fictional parks, while others required research
to gather information for the park. Students
created zoos, tours of presidential homes,
theme parks with imaginary creatures, and a
park featuring major composers and artists.”

The block-based, easy-to-learn Scratch
programming language (scratch.mit.edu)

Designed by Dexter Industries, the Mars Rover
project (helloworld.cc/2jywL9V) is a group of
lessons that teach students about past and
current space technology. The students then
apply that information to designing and building
a planetary rover of their own, using the GoPiGo
robot as a base.

“Students add real and fake sensors to their
robot,” reveals Lisa. “If students don’t have
access to any sensors, they will create models
of them to attach to their robot.” Students
then send their robot onto a new ‘planet’ to
explore and determine if the land is habitable
for humans. “The ‘planet’ is a space that has
been created to look like another world. In
my class it was made out of cardboard, cups,
foam blocks, and other materials from our
class makerspace.”

After an introductory lesson, the students
gather data from their robot using an ultrasonic
sensor and Raspberry Pi camera to see what the
planet looks like. In the next lesson, they use
a temperature and humidity sensor to gather
more information about living conditions on the
planet. They then compare the temperature of
the planet to others in our solar system. Finally,
students use a light sensor to gather data about
day and night on the planet.

MARS ROVER
PROJECT

http://www.helloworld.cc
http://scratch.mit.edu
http://helloworld.cc/2jywL9V

helloworld.cc90

has been used by students to plan stories.
“Students first write code for the GoPiGo
robot, and then they create a storyline
that reflects the events in the code. For
example, the robot is programmed to
move forward, stop and wait for a few
seconds, and then move backward. The

story could be that the main character is
walking through the forest until suddenly
they stop, because they see a bear staring
right at them. They stop in their tracks
and try to determine what to do next.
Next, they slowly back away to try to get
to safety.”

Problem-solving
Lisa tells us that using the robots also helps
to teach problem-solving skills during the
after-school club activities. “One activity we
did last year reflected the weather that had
just occurred. Students had several days off
school due to a blizzard. The first robotics club
meeting after [it], students were given the
task of creating a robot that could transport
needed supplies to a family stranded due to a
blizzard. The students created containers on
their GoPiGo robot to hold supplies, and then
programmed the robot to follow a certain path
to get to the cabin to deliver the supplies and
return home. Students had to work through
several iterations of their design and programs
before succeeding at their mission. This was a
good way to teach not only programming, but
the art of perseverance.”

Another activity from the after-school
programme is called Treasure Hunters and
teaches students about the infrared line-
follower sensor. “Students are trying to
get their robot to the ‘treasure’ marked by
an X on the floor. They’re successful when
the line-follower sensor reads all black
and is completely over the X marking the
location of the treasure. This was also a
good activity for not only teaching how to
program the robots, but problem-solving
and using failure to learn and improve.”

Students have also added arms or
extensions to their robots to enable them
to write and draw. “They were given the
challenge to program their robot to create
a picture or to write a letter or word. This

Launched via a successful Kickstarter crowdfunding campaign last year, the GoPiGo turns your Raspberry
Pi into a fully functional two-wheeled robot (helloworld.cc/2iAbjgz). The $100 Base Kit includes the GoPiGo
board, chassis, wheels, motors, encoders, and battery pack. If you’re starting from scratch, the Starter
Kit adds a Raspberry Pi 3, mini WiFi dongle, GoPiGo servo package, ultrasonic sensor, micro SD card (with
Dexter’s software preloaded), power supply, and Ethernet cable. Classroom bundles and extra learning
resources are also available.

According to its creator John Cole, of Dexter Industries, the GoPiGo was originally designed to make
robotics accessible to everyone, especially in education. “We’ve got software for it in a lot of languages at
this point, including Scratch and Python. Our hope was to give students a place to start with robotics, and
leave the upside or potential as wide as possible.”

GOPIGO ROBOT

n After-school club attendees added an arm to a robot,
to enable it to draw pictures and write letters

FEATURE

http://www.helloworld.cc
http://helloworld.cc/2iAbjgz

helloworld.cc 91

was a good way for students to get used
to using the robots and learn about the
basics of coding.”

Lesson planning
In addition to the lessons and activities
she has already done with her class, Lisa
is excited about several lessons that she
has developed for the robots and has not
yet used in her classroom. “There are so
many possibilities across the curriculum
to integrate robotics into multiple content
areas. One of the lessons I created is about
cold-blooded animals. Students learn about
the differences between cold-blooded and
warm-blooded animals. They then transform

their GoPiGo robot into a cold-blooded
animal that reacts to changes in temperature.
When it becomes too cold, it moves to a
warmer spot and when it’s too hot, it moves
to a cooler spot.”

Another lesson sees students investigate
how the GoPiGo robot works, and then
compare and contrast the different human
body systems to the robot’s components.

Maths lessons written by Lisa include
investigating circumference and ratios.
“In the circumference lesson, students
learn about the connection between
circumference and distance travelled, using
the GoPiGo robot to measure how far it has
travelled after one or more revolutions of the
robot’s wheels.”

Lisa’s school curriculum focuses on the
core content: maths, reading, writing, oral
communication, science, and social studies.
“Any programming and computing lessons

should correlate to the core curriculum.
This has made me look at different ways
of planning and organising my lessons
trying to incorporate physical computing
whenever possible.”

Physical computing
As well as being a lot of fun, Lisa reckons
that the use of physical computing
(interactive physical systems that can
sense and respond to the real world) in
the classroom is helping her to teach the
fundamentals of computing in a more
engaging way. “When students see
something in real life moving or reacting,
they get much more excited than when their
code only changes something virtually.”

It’s not just the more able students who
find it helpful, either. Lisa has found that the
use of robotics in the classroom benefits
and appeals to children of all abilities. “The
use of robots has engaged students that
aren’t always engaged in lessons. They are
allowed more freedom and creativity in their
learning; it’s hands-on and not worksheet-
based. The robots also give the students
a safe space to fail and learn from failure.
It’s not as intimidating to fix a problem with
their robot as it is to struggle on a test or
quiz. Students can then learn how to grow
and learn from failure, rather than viewing it
as an end point.”

The success of the robots in the classroom
has led to more children attending the after-
school robotics club. “The after-school club
has grown since it first started. We currently
have an eight-week session in the spring
(once a week).”

In addition, other teachers have shown
an interest in using robots in lessons. “There
are a couple of other teachers at my school
and surrounding schools starting to use
robotics in class. They’re mainly used for
extension activities.”n The enthusiastic reaction from students has resulted in a greater motivation to learn about computing and technology

THE USE OF ROBOTS HAS ENGAGED
STUDENTS THAT ARE NOT ALWAYS
ENGAGED IN LESSONS.

“

http://www.helloworld.cc

helloworld.cc92

ode.org is a non-profit organisation dedicated
to expanding access to computer science, and
increasing participation by women and under-

represented minorities. Our vision is that every student
in every school should have the opportunity to learn
computer science, just like biology, chemistry, or algebra.
To support this goal, Code.org has developed a pathway
of courses and educational tools for students in primary
and secondary school, including an Advanced Placement
CS Principles course designed for students in grades
9-12 (years 10-12 in the UK).

A course for everyone
Code.org’s CS Principles course is aligned to the
Advanced Placement CS Principles Framework created by
the College Board. It serves as an introduction to students
new to computer science, and intentionally covers more
than just traditional programming skills. Students in the
course learn about the various protocols of the internet,
how digital information is encoded, the security and
privacy trade-offs of big data, and how to program
interactive apps in JavaScript.

The curriculum is also intended to support teachers
who are new to the field. Daily lesson plans, with activity
guides and assessments, are provided to structure the
year and ensure coverage of the CS Principles Framework.
Activities put the student at the centre of the learning,
so that the teacher doesn’t need to be the single source
of knowledge. Videos are also available throughout the
curriculum, either providing direct guidance to teachers, or
covering more complicated computer science concepts in
a visual and engaging way.

Flexible programming paradigm
While the course is accessible to students with no
experience, the curriculum and tools can support
students with more experience as well. App Lab
(helloworld.cc/2ijEfsh) is a programming environment
developed by Code.org that supports transitioning from
block-based programming to JavaScript text and back. This
flexibility allows students working on the same projects
to operate in the paradigm in which they are comfortable
(blocks or text). The environment also supports many
general JavaScript commands, so students who are able to
take their creations further can do so.

Discovery through educational tools
To support meaningful understanding of the CS
Principles learning objectives, Code.org has developed
a set of educational tools designed to promote student
exploration. These online sandboxes introduce rigorous,
often abstract concepts in a concrete way, giving students
a shared experience to reflect on as they move through
the course. The Internet Simulator is a tool which gives
students space to grapple with the design challenges of
creating robust protocols to support communicating over
the internet. Students have the freedom to build their
own novel solutions, rather than being constrained to
accepted solutions from the field. Other tools to support
understanding of compression, pixels, and encryption,
concepts that are often explored through paper-and-pencil
activities, are integrated throughout the course. The Code.
org CS Principles curriculum is totally free, open-source, and
available online to any educator, regardless of background or
experience. Learn more at code.org/cps.

OPINION

C

Code.org’s Computer Science Principles course provides a broad and approachable
introduction to computer science for high-school students and teachers new to the field

A COMPUTER SCIENCE COURSE
FOR ALL HIGH-SCHOOL STUDENTS

SARAH FILMAN & BROOK OSBORNE CODE.ORG

http://www.helloworld.cc
http://www.code.org/cps

helloworld.cc 93

mpossible. That was the first thought I had
when I decided to jump into the world of
computing and digital making. I’m a high-school

literature and composition teacher, and it took a couple
of students working on a passion project to pique my
interest in coding. Once I saw “hello, world” appear on
the screen, I was hooked. You too might be beginning
your adventures into the world of computing and digital
making, and I want to give you a few tips I’ve picked up
on my journey.

A connected community
Embrace the maker community and use
it when you’re stuck. One of the best
things I’ve experienced since I entered
the world of digital making is the maker
community. It’s a diverse group of people
that are smart, connected, and very helpful. Some of my
first projects would not have been possible if it wasn’t for
the help from the community. If my code wasn’t running,
I couldn’t get the light to blink, or a whole host of other
issues occurred, they were solved with the support of
the community. After a while, you’ll find yourself helping
others with their questions.

Take some fun risks when deciding on projects. The
exciting part of trying something new is that you have no
idea how it’s going to end. Making is about taking risks
and creating something fun. No idea is too crazy, and the
biggest ideas can turn into the best learning experiences. I
once turned a rotary phone into a working AirPlay system.
It was a crazy idea that took some time to figure out, but

I did it. I didn’t know how when I started, but now I do.
Taking the risk allowed me to explore new ideas and learn
great things. Try taking more risks, and you never know
what cool stuff will happen.

Accept failure
Along with risk comes failure, and you need to accept it as
part of the making process. There are going to be short-
term failures and long-term failures. One project took me
six months to get correct. It was a line of code I couldn’t

figure out, but I eventually got it. When I did, I felt like a rock
star! These failures teach valuable lessons for you as you
advance on your computing journey. Also, don’t be afraid
to make your failures public. You’ll get more help if you
let people know that you need it, but it also shows your
students that you’re human and make mistakes as well.

I hope these few tips help you as you advance on your
own making adventures, and I can’t wait to share the fun
and exciting things I discover over the coming months.

I

Author, geek, and nerdy teacher, Nick Provenzano, on why failure matters…

Nicholas Provenzano Four words describe Nicholas:
Teacher.Leader.Learner.Nerd. He travels the country speaking
and consulting with educators to share innovative practices.

IMPOSSIBLE
NICK PROVENZANO TEACHER

One of the best things I’ve experienced
since I entered the world of digital
making is the maker community

OPINION

http://www.helloworld.cc

helloworld.cc94

By launching a new professional development opportunity for educators in the
United States, the Raspberry Pi Foundation brings digital making stateside…

AMERICAN PICADEMY

raining educators is one way that
the Raspberry Pi Foundation

achieves its mission of putting the power
of digital making into the hands of people
all over the world. Spreading this training
beyond the borders of the United Kingdom,
therefore, became a high priority in 2015.

At the same time, during the National
Week of Making, President Obama made
a call to action to create a nation of makers
within the United States.

“During National Week of Making, we
celebrate the tinkerers and dreamers whose
talent and drive have brought new ideas
to life, and we recommit to cultivating the
next generation of problem-solvers,” said
President Obama. “As the maker movement
grows, I continue to call on all Americans to
help unlock the potential of our nation and
ensure these opportunities reach all our
young people, regardless of who they are or
where they come from.”

The President’s call to action resonated
with our commitment to digital making. At
that time, the Raspberry Pi Foundation’s
Picademy programme had trained
hundreds of teachers at venues across the

United Kingdom. These educators were
getting hands-on training for teaching
with digital making as a tool. Among those
educators, some even travelled all the
way from the United States to experience
Picademy first-hand.

So it was clear to us at the Raspberry
Pi Foundation that demand was strong
within the United States for our special
blend of digital making professional
development. We therefore made a
commitment in response to President
Obama’s call to action. In 2016, we
promised to train at least 100 educators
at four events on U.S. soil as a part of
a U.S. pilot of Picademy. Making this
commitment was the easy part. We
knew that planning and executing
the program would be a journey into
uncharted territories.

STORY BY Matt Richardson

NEWS FEATURE

T

The Raspberry Pi Foundation is always on
the lookout for engaged and enthusiastic
educators to experience Picademy.

At helloworld.cc/2jqFVCd you can
see the latest news on the United States
program, and sign up for email alerts
about this free two-day workshop for
educators of all types.

JOIN US AT PICADEMY!

http://www.helloworld.cc
http://helloworld.cc/2jqFVCd

helloworld.cc 95

Putting a plan into action
Picademy is an intense experience, no
matter where it’s held. Over the course of
the two days, all types of educators get
hands-on experience with digital making.
On the first day, they’re given a series of
workshops that explore different ways to

use Raspberry Pi in educational contexts.
On the second day, they collaborate
together to create something, using what
they learned. The program culminates with
the educators sharing their projects and
what they learned with their peers.

As soon as our U.S. pilot got the
green light, we needed to make some
fast decisions about what Picademy
would be like in the United States. We
looked at every aspect of the program
and examined its purpose. We had to
evaluate whether it should be adapted in
any way for American educators, or if this

new program was a good opportunity
to try things in a different way. Nothing
was taken for granted. We scrutinised
everything: the application process,
content, agenda, equipment needs,

and size of the cohort. Many changes
were made, both big and small, but
the essence of the program remained
the same. These educators were going
to learn a lot, fail a little, collaborate
together, and have fun.

The collaboration between our
Cambridge UK and San Francisco teams
meant late evenings and early mornings
for them, respectively. Working together
over regular videoconferences, we
discussed the what, when, why, and how.
Figuring out the where was definitely the
biggest challenge.

Location, location, location
Even today, our footprint in the United
States is small. Hosting 40 educators for
two days meant that in order to pull this
off, we’d have to find a place to run the
workshop. While it was a major challenge
to find the right venues, it provided a great
opportunity to enhance the program. What
if, in addition to hosting the workshop, we
also found institutions that could contribute
to the content of Picademy? This would
make the opportunity to learn with us even
more valuable for the educators.

Because of this, the Computer History
Museum in Mountain View, California was
a natural partner from the beginning. In
addition to providing the physical space to
hold our first ever Picademy in the United
States, they would also be able to take the
attendees on a guided tour of their artifacts
and facilitate a gallery discussion around
the history of computing.

After the successful execution of the
first two US Picademy workshops at

WE NEEDED TO MAKE SOME FAST
DECISIONS ABOUT WHAT PICADEMY
WOULD BE LIKE IN THE UNITED STATES

“

n Becoming a Raspberry Pi Certified Educator is just the
beginning. (Image courtesy of Melissa Huch)

Built with an Explorer HAT, motor, LEDs, and
some arts and crafts supplies, Whiskers
is a virtual coach programmed in Scratch
to dispense helpful advice to teachers in
need. It was created on the second day of
Picademy Austin by Kimberly Boyce-Quentin
and Bradley Quentin. You can think of it like
a tongue-in-cheek Magic 8-Ball for teachers,
dispensing advice such as “I’ve found that
it’s better to ask for forgiveness instead
of permission.”

WHISKERS

PROJECT
SPOTLIGHT

http://www.helloworld.cc

helloworld.cc96

NEWS FEATURE

the Computer History Museum, we
took the show on the road and found
more institutions to host and contribute
to the program. Our Austin cohort was
treated to a tour of the some of the most
powerful supercomputers in the world,
housed on-site at the Texas Advanced
Computing Center. Our Baltimore host,
the Digital Harbor Foundation, shared
their experience of running an after-school
technology centre.

“For us, Picademy was an opportunity
to serve as a hub for passionate educators
to come together and not only experience
what the Raspberry Pi Foundation had
put together, but to see what the Digital
Harbor Foundation was about,” says
Shawn Grimes, DHF’s Interim Executive
Director. “In between the sessions, our
staff were exchanging stories and ideas
with participants to build upon each
other’s ideas.”

All of our hosts provided much more
than just a space to hold the workshop.
They enhanced Picademy to make each
session an incredibly unique experience
for our educators.

From learning to leading
The 160 educators that joined us for
the Picademy workshops in the United
States were energetic, engaged, and from

many different educational contexts. They
included classroom teachers, librarians,
museum educators, and after-school
educators. Even though they had varying
levels of experience with the subject
matter when they showed up, their first
day equipped all of them with the basic
knowledge that they’d need for employing
digital making in their educational context.

“After the first day, I had a good sense
of what was possible with the Raspberry
Pi,” says Jaymes Dec, a Technology
Integrator at the Marymount School in
New York City. “The next day, I was really
excited to find myself in the same position
that I often put my students: trying to find
the answers to technical questions on
my own before asking for help from the
facilitators. It was a great opportunity to
feel what they feel, as I discovered
questions and then dug up the answers.
In the end, I had a great time learning by
making with my teammate.”

Some of our newly inducted Raspberry
Pi Certified Educators even come back to
other workshops to facilitate the learning
experience for others.

“A colossal value in coming back as a
facilitator was being able to take what I
learned during my session of Picademy, and
turn it into a beneficial experience for other
educators,” says Venus Montes, a Computer

Amanda Haughs, a Teacher on Special
Assignment (TOSA) from Campbell Union School
District in California, shares her experience as a
Picademy participant and facilitator.

AS AN EDUCATOR, WHAT WAS THE BENEFIT
OF PICADEMY?
Attending Picademy provided me with the
knowledge that I needed to introduce more
students and teachers in my school district to
coding, computer science, and digital making.

WHAT’S IT LIKE BEING A PICADEMY FACILITATOR?
Having been given the opportunity to also
facilitate at Picademy events has supported my
continued growth as a digital maker. Each time
that I work with a new cohort, I learn something
new about not only the content, but also about
the best ways to present the skills and concepts
to both educators and the students of all ages
with whom those educators work.

WHY IS THAT IMPORTANT?
The ongoing learning and sharing has given
me the confidence and credibility I needed to
begin advocating for a formal computer science
pathway in our district, a project that I’m
excited to say my instructional technology team
has now seriously started discussing since my
experiences with the Raspberry Pi Foundation!

FROM A PICADEMY
FACILITATOR

n Picademy Certified Educator and facilitator Kevin Olson
helps an educator. (Image courtesy of Melissa Huch)

http://www.helloworld.cc

helloworld.cc 97

Programming Instructor
in North Bergen, New Jersey. “Being a
facilitator extended the reach of what
I learned during my Picademy session
beyond my classroom, my district, and
my state, into classrooms of many other
educators across the nation.”

Bootstrapping a community
But the Picademy experience doesn’t
end when the two days are over. It’s an
induction into a very large community
of Raspberry Pi Certified Educators
worldwide. These educators help
each other, share their students’ work,
meet up at Raspberry Jams, and train
other educators.

“Picademy has opened up so many
doors to me. I now have a whole network
of colleagues I can turn to for support and
to share ideas,” says Certified Educator
Kevin Olson. “The Google+ community is a
fantastic resource of like-minded individuals,

the #picademy hashtag is always full of
great ideas and troubleshooting, and the
personal connections I’ve made through
Picademy continue to enrich my personal
and professional life.”

Getting this digital making community
started among educators in the United

States is an important part of Picademy.
Having a strong community of educators
is critical to achieving our mission. The
Picademy program is, by design, meant to
get this community started.

“Being at Picademy helped introduce
me to a supremely supportive community,”
says Matthew Buckley, a Director of
Instructional Technology at Bishop
McNamara High School, Forestville,
Maryland. “The information we receive
on day one is golden, but what was more
helpful for me was being introduced
and encouraged within the digital
making community.”

Looking ahead
The impact of Picademy is measured not
only by the number of teachers that we
train, but also the number of students that
each of them reaches.

“Possibly the single greatest outcome
from Picademy is the confidence it has given
me to jump in and get going with digital
making and computer science,” says Kevin
Olson. “I have 72 sixth-graders programming
robots to recreate novels, two middle-school
electives full of students who can’t wait
to get their hands dirty with Sonic Pi and
Minecraft, and my mind is constantly buzzing
with ideas for integrating projects in all
subject areas. And instead of waiting around
to figure out every last detail, we’re jumping
in and learning together!”

Thanks to a very successful pilot, the
Raspberry Pi Foundation trained 160
educators in four Picademy workshops in
Mountain View, Austin, and Baltimore. To
build on this success, our goal is to train at
least 300 educators in the United States
in 2017 and bring the program to new
regions. We’re always on the lookout for
enthusiastic educators, no matter what
their level of experience, to take part in
this unique programme. Best of all, this
professional development offering is
completely free for educators.

We hope to welcome you to
a Picademy soon.

I NOW HAVE A WHOLE NETWORK
OF COLLEAGUES I CAN TURN TO
FOR SUPPORT AND TO SHARE IDEAS

“

n Educators are encouraged to celebrate every success they
have along their journey. (Image courtesy of Melissa Huch)

n At the end of the second day, teams present their projects
to their peers. (Image courtesy of Jorge Salazar)

http://www.helloworld.cc

helloworld.cc98

few things have left me pondering the place of
values and ethics in computing education and
digital making.

The Children’s Commissioner recently published a report on
children’s online rights. I was asked, when presenting on the
English national curriculum in Hanoi, why we didn’t mention
values, as they had in the framework they’re currently drafting.

Back home, the European Parliament produced a draft
report on the ethical principles that should underpin the
development and design of robots.

As a community of digital educators, what are our
shared values? What are the overarching aims or
principles of what we’re trying to do in computing
education or digital making?

The English computing curriculum starts with this
ambitious vision:

A high-quality computing education equips pupils to
use computational thinking and creativity to understand
and change the world.

Understanding the world is an enlightenment value: it
assumes the world is a knowable thing, and that curiosity
about it is good. We might, then, see the need for free
access to knowledge, free participation in debate, and
freedom to experiment as part of the learning process.
‘Changing the world’ is ambitious, but I worry that we leave
implicit the idea of changing it for the better. The English
computing curriculum emphasises the need for pupils
to stay safe and act responsibly, but shouldn’t we also
consider the ethical use of technologies to improve the lives
of others, and the ethical assumptions of the algorithms
behind the services we rely on?

The new US K12 CS Framework goes further,
emphasising an inclusive culture as a guiding principle and
the need to teach the impacts of computing:
An informed and responsible person should understand
the social implications of the digital world, including equity
and access to computing.

The Raspberry Pi Foundation has a clear mission statement:

To put the power of digital making into the hands
of people all over the world, so they are capable of
understanding and shaping our increasingly digital
world, able to solve the problems that matter to them,
and equipped for the jobs of the future.

It’s impressive to see the founders’ values in firstly
making low-cost, general-purpose computers available
to all and, secondly, prioritising education as a shared
goal. Other similar projects share a sense of positive
change through technology, like Apps for Good. Those
involved learn skills and develop understanding, but
they also make apps that have a societal benefit:
a moral purpose.

I suspect that character, values, and ethics in education
are better learnt through example than worksheet; We
must bring these more to the surface in what we do:
thinking about the why, as well as the what and the how
of the things our students learn and make.

OPINION

A

What’s the place of ethics in our work as computing or digital making educators?
How can we help our students to help others?

Miles Berry is principal lecturer in computing education
at the University of Roehampton. He helped draft the
English computing curriculum and is a member of the

Raspberry Pi Foundation.

VALUES?
MILES BERRY PRINCIPAL LECTURER

http://www.helloworld.cc

https://coderdojo.com/
https://coderdojo.com/

(helloworld.cc)100

helloworld.cc

http://www.helloworld.cc

	01_HelloWorld#01
	02_HelloWorld#01
	03_HW_welcome_RB-DM-RBv3_LC_MK3-DM
	004_HelloWorld#01
	06-07_HW_About-the-mag_LC_MK2-DM
	015_HelloWorld#01
	017_HelloWorld#01
	18-21_HW_Research_Feature_LC_RB-DM
	022_HelloWorld#01
	023_HelloWorld#01
	025_HelloWorld#01
	30-31_HW_Subs_MK2_LC_RB-DM
	034_HelloWorld#01
	36-37_HW_Computing-exclusive_MK_LC_LL_DM_RB-DM
	039_HelloWorld#01
	40-41_HW_ProjectQuantum_LC_RB-DM
	42_HelloWorld#01
	43_HW_BCS-FEATURE_MK_LC_RB-DM
	44-45_HW_Computer-Science _Feature_MK_DM_LC_RB-DM
	46-48_HW_Scratch-to-Python-LP_MK_LC_RB-DM
	051_HelloWorld#01
	52-53_HW_Ravenswood_Lesson-Plan_LC_MK-DM
	54_HelloWorld#01
	056_HelloWorld#01
	058_HelloWorld#01
	061_HelloWorld#01
	063_HelloWorld#01
	066_HelloWorld#01
	68-69_HW_10STEPS_LC_RB-DM
	073_HelloWorld#01
	078_HelloWorld#01
	081_HelloWorld#01
	082_HelloWorld#01
	084_HelloWorld#01
	087_HelloWorld#01
	88-91_HW_Robots In Schools_LC_RB-DM
	093_HelloWorld#01
	098_HelloWorld#01
	099-100_HW_OBC

