
ESSENTIALS

ELECTRONICS
SIMPLE

ZERO
TAKE CONTROL OF THE REAL WORLD

WITH
YOUR Raspberry Pi

Written by Phil King

GPIO

SAVEUP TO25%

THE OFFICIAL
RASPBERRY PI
MAGAZINE

2

How to subscribe:

 magpi.cc/Subs1 (UK / ROW) imsnews.com/magpi (USA)

 Call +44(0)1202 586848 (UK/ROW) Call 800 428 3003 (USA)

Search ‘The MagPi’
on your app store:

3

FREE PI ZERO!
Subscribe in print for six or 12 months to receive this stunning free gift

Pricing
Get six issues:

£30 (UK)

£45 (EU)

$69 (USA)

£50 (Rest of World)

Subscribe for a year:

£55 (UK)

£80 (EU)

$129 (USA)

£90 (Rest of World)

Direct Debit: £12.99 (UK) (quarterly)

Subscribe today & receive:
 A free Pi Zero v1.3 (the latest model)

 A free Camera Module connector

 A free USB & HDMI cable bundle

Delivered with your first issue!

Other benefits:
 Save up to 25% on the price

 Free delivery to your door

	 Exclusive	Pi	offers	&	discounts

	 Get	every	issue	first	(before	stores)

http://magpi.cc/Subs1
http://imsnews.com/magpi
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

ne of the main reasons for the Raspberry
Pi’s continued popularity is its 40-
pin GPIO header, which enables users

to connect electronic components and control
them with a program. While other languages
may be used, the code for physical computing
projects is usually written in Python, something
that’s become a whole lot easier with the recent
introduction of the GPIO Zero library. Before its
arrival, connecting electronics required numerous
lines of code just to get everything set up. GPIO
Zero does all this boilerplate code for you, so you
can focus on controlling the physical devices. As
well as resulting in far fewer lines of code, it makes
it a lot easier for newcomers to understand.

In this book, we’ll help you start coding with
GPIO Zero, guiding you step by step through
all sorts of projects, from basic LED and button
circuits to using various sensors and building
robots. It’s time to dust off that breadboard!
Phil King
Contributing Editor, The MagPi magazine

WELCOME
TO SIMPLE
ELECTRONICS
WITH GPIO ZERO

O

4 [Chapter One]

EDITORIAL
Managing Editor: Russell Barnes
russell@raspberrypi.org
Contributing Editor: Phil King
Sub Editor: Laura Clay
Contributors: Mike Cook, Richard Hayler & family

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Dougal Matthews
Designers: Lee Allen, Mike Kay

This book is published by Raspberry Pi (Trading) Ltd., 30 Station Road, Cambridge, CB1 2JH. The
publisher, editor and contributors accept no responsibility in respect of any omissions or errors
relating to goods, products or services referred to or advertised in this product. Except where
otherwise noted, content in this magazine is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0).

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave, London
EC1A 9PT | +44 (0)207 429 4000

THE MAGPI SUBSCRIPTIONS
Select Publisher Services Ltd
PO Box 6337, Bournemouth
BH1 9EH | +44 (0)1202 586 848
magpi.cc/Subs1

mailto:russell%40raspberrypi.org?subject=
mailto:magpi%40raspberrypi.org?subject=
http://raspberrypi.org/magpi
http://magpi.cc/Subs1
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

5[Don’t Panic] 5[Contents]

CONTENTS

ESSENTIALS

38 [CHAPTER SIX]
MOTION-SENSING ALARM
Use a PIR to create an intruder alert

42 [CHAPTER SEVEN]
BUILD A RANGEFINDER
Connect and read a distance sensor

47 [CHAPTER EIGHT]
MAKE A LASER TRIPWIRE
Use an LDR to detect light/dark

53 [CHAPTER NINE]
BUILD AN INTERNET RADIO
Adjust the station with potentiometers

61 [CHAPTER TEN]
CREATE AN LED
THERMOMETER
Read an analogue temperature sensor

68 [CHAPTER ELEVEN]
BUILD A ROBOT
Control DC motors with GPIO Zero

76 [CHAPTER TWELVE]
QUICK REFERENCE
A handy guide to GPIO Zero’s many
useful classes

06 [CHAPTER ONE]
GET STARTED WITH
GPIO ZERO
Discover what it’s all about

11 [CHAPTER TWO]
CONTROL LEDS
Make them blink and more

18 [CHAPTER THREE]
ADD A PUSH BUTTON
Create a fun reaction game

25 [CHAPTER FOUR]
MAKE A MUSIC BOX
Link buttons to sounds

32 [CHAPTER FIVE]
LIGHT AN RGB LED
All the colours of the rainbow

[PHIL KING]

Phil King is
a Raspberry
Pi enthusiast
and regular
contributor to The
MagPi magazine.
Growing up in the
‘golden era’ of
8-bit computers in
the 1980s, he leapt
at the chance to
write about them
in magazines such
as CRASH and
ZZAP!64. When
consoles took over
the video games
world, he missed
the opportunity
to program… until
the Raspberry Pi
came along. Phil is
now an avid coder
and electronics
dabbler, who
loves to work on
projects with his
six-year-old son.

6

ESSENTIALS

[Chapter One]

[CHAPTER ONE]

ESSENTIALS

6 [Chapter One]

ELECTRONICS
& GPIO ZERO
Discover what GPIO Zero is and how you can use it to
program electronics connected to your Raspberry Pi

GET STARTED WITH

7

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

7

he Raspberry Pi is great for learning computing. Whether
that’s coding or tricks for the advanced user, the Raspberry
Pi has many tools to help you learn about them. It’s also very

good at physical computing, which in this context means programming
and interacting with the real world through electronics. In simple
terms, physical computing with the Pi is something like programming
it to turn on an LED, a component in an electronic circuit.

The electronic circuits are the physical part of a physical computing
project connected to the Raspberry Pi. These circuits can be simple
or very complex, and are made up of electronic components such as
LEDs, buzzers, buttons, resistors, capacitors, and even integrated
circuit (IC) chips.

At its simplest, an electronic circuit lets you route electricity to
certain components in a specific order, from the positive end of a
circuit to the negative (or ground) end. Think of a light in your house:
the electricity passes through it, so it lights up. You can add a switch
that breaks the circuit, so it only lights up when you press the switch.
That is an electronic circuit.

Reading circuit diagrams
Building a circuit can be easy if you know what you’re doing, but if
you’re making a new circuit or are new to electronics in general, you’ll
most likely have to refer to a circuit diagram. This is a common way
you’ll see a circuit represented, and these diagrams are much easier to
read and understand than a photo of a circuit. However, components
are represented with symbols which you’ll need to learn or look up.
Fig 1 is an example of the light circuit we talked about before. Here we

T

[Electronics & GPIO Zero]

Fig 1 Switch circuit

[COMMON
COMPONENT
SYMBOLS]
>RESISTOR

> BUTTON/
SWITCH

>LED

>CAPACITOR

8

ESSENTIALS

[Chapter One]8 [Chapter One]

have a power source (a battery in this circuit), a switch, a resistor, and
an LED. The lines represent how the circuits are connected together,
either via wire or other means. Some components can be used any
way round, such as the resistor or switch. However, others have a
specific orientation, such as the LED. Diodes only let electricity flow
from positive to negative; luckily, real-life LEDs have markers such
as longer legs or a flat edge to indicate which side is positive, making
them easier to wire up.

The Raspberry Pi and electronic circuits
Making a Raspberry Pi part of the circuit is quite easy. At its most basic,
it can provide power to a circuit, as well as a negative or ground end
through the GPIO pins. Some pins are specifically always powered, mostly
by 3.3V, and always go to ground. Most of them can be programmed to
create or recognise a HIGH or LOW signal, though; in the case of the
Raspberry Pi, a HIGH signal is 3.3V and a LOW signal is ground or 0V.

In an LED example, you can wire up an LED directly to a 3.3V pin and
a ground pin and it will turn on. If you instead put the positive end of
the LED onto a programmable GPIO pin, you can have it turn on by
making that pin go to HIGH (see chapter 2 for more details).

This part of the
breadboard is connected
all the way across, as the lines
indicate. They’re often used to
provide an easily accessible positive
and negative ‘rail’

Each hole on a
numbered row is
connected to each
other, with a split in
the middle where
the groove is

9

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

Wiring up a circuit to a Raspberry Pi is fairly simple. To create the
physical circuits in the guides throughout this book, we’re using
prototyping breadboards. These allow you to insert components
and wires to connect them all together, without having to fix them
permanently. You can modify and completely reuse your components
because of this.

Using GPIO Zero
Once the components are all
hooked up to your Raspberry Pi, you
need to be able to control them. The
Raspberry Pi is set up to allow you to
program it with the Python language.
This has also been made simpler recently
with the addition of GPIO Zero. It comes
pre-installed in the latest version of Raspbian
Jessie. If you don’t have it yet, however, you
can install GPIO Zero manually: after performing
a package list update by entering sudo apt-
get update in a terminal, enter sudo apt-get
install python3-gpiozero.

GPIO Zero was created to simplify the process
of physical computing, helping new coders to
learn. It’s a Python library which builds upon the
existing GPIO libraries RPi.GPIO, RPIO, and pigpio.
However, while those libraries provide an interface
to the GPIO pins themselves, GPIO Zero sits above
them and provides a way to interface to the devices
that you connect to those pins.

This change simplifies thinking about physical
computing. Consider wiring a simple push button
to GPIO 4 and ground pins. In order to react to this
button, we need to know that the pin should be
configured with a pull up resistor, and that the pin
state when the button is pushed will be 0. Here’s what
this would look like in the classic RPi.GPIO library:

GPIO Zero uses the BCM GPIO numbering rather
than the pin number – use this handy table
to remember which is which

[GPIO NUMBERS]

5V

5V

GND

GPIO14

GPIO15

GPIO18

GND

GPIO23

GPIO24

GND

GPIO25

GPIO8

GPIO7

DNC

GND

GPIO12

GND

GPIO16

GPIO20

GPIO21

3.3V

GPIO2

GPIO3

GPIO4

GNV

GPIO17

GPIO27

GPIO22

3.3V

GPIO10

GPIO9

GPIO11

GND

DNC

GPIO5

GPIO6

GPIO13

GPI19

GPI26

GND

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

40-pin GPIO header key for
Raspberry Pi 3, 2, B+, and A+

[Electronics & GPIO Zero]

10

ESSENTIALS

[Chapter One]10 [Chapter One]

from RPi import GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)
while GPIO.input(4):
 pass
print("Button pushed!")

To complete beginners, there’s quite a lot
going on there, which gets in the way of actually
experimenting with it and even teaching the
simple logic required. Here’s the equivalent code
in GPIO Zero:

from gpiozero import Button

btn = Button(4)
while not btn.is_pressed:
 pass
print("Button pushed!")

The boilerplate, the code you have to blindly
enter without understanding why you’re entering
it, is reduced to the bare minimum that we need.

The name ‘GPIO Zero’ derives from this ‘zero
boilerplate’ philosophy, which was first espoused

by Daniel Pope’s Pygame Zero library.
The logic is also straightforward, with

no curious inversion of the input value.
So, now you’ve learnt about GPIO

Zero and how it makes coding much
simpler, it’s time to get started doing

some physical computing with
it. In chapter 2, we’ll show you

how to wire up some LEDs on a
breadboard and control them

using GPIO Zero’s LED class.

[WHAT'S NEW IN GPIO ZERO?]

GPIO Zero can use buttons,
LEDs, buzzers, and lots of other
components. The library is
always expanding.

>SERIAL PERIPHERAL
 INTERFACE
Released in 1.2.0, there is now an

SPI implementation for specific

compatible devices to talk to the

Pi. This allows for analogue inputs,

analogue-to-digital converters,

and other pretty advanced stuff,

but it makes using them much

more simple.

>HOLD EVENTS
These are variables in something

like button code that allow you

to set a length of time a button

should be pressed before being

recognised as a press. This can be

useful if your button is very twitchy

in a project you’re using.

>SOURCE TOOLS
The tools library for the source

and values properties enables

you to tweak and play with the

way GPIO Zero handles specific

components and functions. We

won't be covering them this

issue, but they're important for

advanced projects.

11

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[CHAPTER TWO]

ESSENTIALS

CONTROL LEDS
Turn LEDs on and off with just a few lines
of code, and build a traffic light system

GPIO ZEROWITH

12

ESSENTIALS

[Chapter One]12 [Chapter Two]

ne of the first physical computing projects you’ll want to
try with GPIO Zero is lighting an LED. This is very simple to
achieve using the library’s LED class, using very few lines of

code. Here we’ll show you how to wire up a simple circuit connected to
your Raspberry Pi’s GPIO pins, then light an LED and make it blink on
and off. We’ll then add two more LEDs to make a traffic light system,
or you can also use a special Traffic HAT add-on.

>STEP-01
Connect an LED
It’s best to turn the Pi off when building a circuit. The breadboard
features numbered columns, each comprising five connected holes.
Place your red LED’s legs in adjacent numbered columns, as shown in
the diagram. Note that the shorter leg of the LED is the negative end;
in its column, insert one end of the resistor, then place the other end
in the outer row marked ‘–’ (the ground rail). Use a male-to-female
jumper wire to connect another hole in that ground rail to a GND pin
on the Pi. Finally, use a jumper wire to connect a hole in the column
of the LED’s longer (positive) leg to GPIO pin 25.

O

> GPIO Zero

> 1× solderless
breadboard

> 3× LEDs (red,
yellow, green)

> 3× 330Ω resistors

> 4× male-to-
female jumper
wires

> Or a Traffic HAT
magpi.cc/
1Mma7oD

You’ll
 Need

The LED’s longer
leg is wired to GPIO
25, while the other
is connected via
a resistor to the
ground rail

A resistor is
required to limit the
amount of current
being drawn by
the LED, to avoid
damage to the Pi

http://magpi.cc/1Mma7oD
http://magpi.cc/1Mma7oD

13

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Control LEDs]

>STEP-02
Light the LED
We’ll now test our circuit with a simple Python program to make the
LED turn on and off. To start coding, open IDLE from the Main Menu:
Menu > Programming > Python 3 (IDLE). Create a new file by clicking
File > New file. Save it with File > Save, naming it ch2listing1.py. Now
enter the code from the listing of the same name (page 16).

At the start of the program, we import the LED class from GPIO
Zero, and the sleep class from the time library (to enable us to pause
between turning the LED on and off). We then assign the led variable
to the GPIO 25 pin, which will power it whenever we set it to on in
the code. Finally, we use while True: to create a never-ending loop
that switches the LED on and off, pausing for 1 second between each
change. Press F5 to run the code, and your LED should be flashing on
and off. To exit the program, press CTRL+C.

>STEP-03
Easier blinking
Alternatively, to make things even easier, GPIO Zero features a special
blink method. You could try entering the code from ch2listing2.py
(page 16), which does exactly the same thing as the first listing, but
with even fewer lines of code.

Above While it’s
possible to connect
an LED and resistor
directly to the
Pi, it’s better to
use a solderless
breadboard

14

ESSENTIALS

[Chapter One]14 [Chapter Two]

Note that between the brackets
for led.blink, you can add
parameters to set the on and off
times, number of blinks, and
determine whether it runs as
a background thread or not.

>STEP-04
Add more LEDs
Now that we’ve got the hang of
controlling one LED, let’s add
a few more and create a traffic
light sequence. You can add an
optional push button to control it
if you like, but for now we’ll stick
to just the LEDs. Connect them as
shown in the diagram, with the

longer (positive) legs connected via jumper wires to the following GPIO
pins: 8 (yellow), and 7 (green). As before, we need a resistor for each
LED, which shares a common ground connection via the ‘–’ rail to one
of the Pi’s GND pins.

>STEP-05
Enter the code
After opening Python 3 (IDLE), type in the code from ch2listing3.py
(page 17) and save it. As before, we import the LED and sleep classes
from GPIO Zero and the time library respectively. We then assign red,
amber, and green variables to the relevant GPIO pins. To start with, we
turn the green LED on and the others off. Finally, we use while True:
for a never-ending loop; this waits 10 seconds before showing amber

Each LED’s longer leg is wired to the
respective GPIO pin, while the other is
connected via a resistor to the ground rail

A resistor is required to limit the amount
of current being drawn by each LED, to
avoid damage to the Pi

Each LED circuit shares a common
ground via the ‘–’ rail, which is
connected to a GND pin on the Pi

15

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Control LEDs]

then red, then waits another 10 seconds before showing red/amber
then green. Press F5 to run the program and wait for the traffic light
sequence to start.

Rather than using sleep to create a delay between each sequence,
you could trigger it with the addition of a push button: see chapter 3
for more details. You could also use a Traffic HAT with a built-in push
button, LEDs, and buzzer.

>STEP-06
Traffic HAT
The Traffic HAT is a fun little kit and has its own
GPIO Zero class for easy programming. With your
Raspberry Pi turned off, slot the Traffic HAT over the
GPIO pins, with the board itself lying across the Pi.
Open a new file in Python 3 IDLE, enter the code from
ch2listing4.py (page 17), and save it. At the top, we
import the TrafficHat class, along with the sleep one from the time
library. We then use a while True: loop to control the traffic lights.
The green light is lit until the button is pressed, then the sequence
is triggered; when it reaches red, the buzzer beeps 20 times, as on a
pedestrian crossing. Amber then flashes, before it returns to green
at the start of the loop, awaiting the next button press.

Above The Traffic
HAT features LEDs,
along with a button
and buzzer

Left The three
LEDs share a
ground connection
via their resistors,
and are hooked up
to GPIO pins 25, 8,
and 7

16

ESSENTIALS

[Chapter One]

ch2listing1.py
from gpiozero import LED
from time import sleep

led = LED(25)

while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

ch2listing2.py
from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

from gpiozero import LED
from time import sleep

red = LED(25)
amber = LED(8)
green = LED(7)

green.on()
amber.off()
red.off()

while True:
 sleep(10)
 green.off()
 amber.on()
 sleep(1)
 amber.off()
 red.on()
 sleep(10)
 amber.on()
 sleep(1)
 green.on()
 amber.off()
 red.off()

ch2listing3.py

16 [Chapter Two]

17

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import TrafficHat
from time import sleep

th = TrafficHat()
try:
 while True:
 # Traffic light code
 # First, turn the green LED on
 th.lights.green.on()
 print("Press the button to stop the lights!")
 # Next, we want to wait until the button is pressed
 while(th.button.is_pressed == False):
 # While not pressed, do nothing
 pass
 # Button has been pressed!
 th.lights.green.off()
 # Amber on for a couple of seconds
 th.lights.amber.on()
 sleep(2)
 th.lights.amber.off()
 # Turn the red on
 th.lights.red.on()
 # Buzz the buzzer 20 times with 0.1 second intervals
 th.buzzer.blink(0.1,0.1,20,False)
 sleep(1)
 th.lights.red.off()
 # Red off and blink amber 4 times with 0.5 second intervals
 th.lights.amber.blink(0.5,0.5,4,False)

except KeyboardInterrupt:
 exit()

ch2listing4.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Control LEDs]

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwguz

http://magpi.cc/2bhwguz

18

ESSENTIALS

[Chapter One]

[CHAPTER THREE]

ESSENTIALS

18 [Chapter Three]

PUSH
BUTTON
Make things happen at the press of a button,
and create a fun two-player reaction game

ADD USER INPUT
WITH A

19

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

19

s well as output devices such as LEDs and buzzers, the
Raspberry Pi’s GPIO pins can be linked to input devices. One
of the most basic is a simple push button, which can be used to

trigger other components or functions. First, we’ll hook up a button on
a breadboard and get a program to print a message on the screen when
it’s pushed. We’ll then get it to light an LED, before adding a second
button for a fun two-player reaction game.

>STEP-01
Connect the button
It’s advisable to turn the Pi off when building your circuit. Note: if
you’ve already completed chapter 2, you can leave your breadboard
circuit as it is, but here we’ll assume you’re building a new circuit.

Add the push button to the breadboard, as in the diagram, with its
pins straddling the central groove. Connect a male-to-female jumper
wire from one pin’s column to GPIO pin 21 on the Pi. Then connect a

A

[Push Button]

> GPIO Zero

> 1× solderless
breadboard

> 2× push buttons

> 1× LED

> 1× 330Ω resistor

> 4× male-to-
female jumper
wires

> 2× male-to-male
jumper wires

You’ll
 Need

When pressed, the
push button pulls
input pin GPIO 21
(pulled high by
default) low

The LED’s longer
leg is wired to GPIO
25, while the other
is connected via
a resistor to the
ground rail

20

ESSENTIALS

[Chapter One]20

male-to-male jumper wire from the other pin (on the same side of
the groove) to the ‘–’ ground rail. Finally, connect a male-to-female
jumper wire from the latter to a GND pin on the Pi.

>STEP-02
Button pushed
We’ll now test our circuit with a simple Python program to show a
message on the screen whenever the button is pushed. To start coding,
open IDLE from the Main Menu: Menu > Programming > Python 3
(IDLE). Create a new file by clicking File > New file. Enter the code from
ch3listing1.py (page 23), then save it.

At the start of this short program, we import the Button class from
GPIO Zero. We then assign the button variable to the GPIO 21 pin, so
we can read its value. Finally, we use while True: to create a never-
ending loop that checks whether the button has been pressed or not,

Above When the
button is pressed,
GPIO 21 registers

the low signal and
our program turns

the LED on

[Chapter Three]

21

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Push Button]

and prints a status message on the screen. When you run the code
with F5, you’ll get a scrolling list of messages that change when
you press the button. To exit the program, press CTRL+C.

Note that it’s also possible to trigger a Python function when
the button is pressed, using the following syntax:

button.when_pressed = functionname()

>STEP-03
Wait for it
GPIO Zero’s Button class also
includes a wait_for_press
method which pauses the script
until the button is pressed. Open
a new file in Python 3 IDLE, enter
the code from ch3listing2.py
(page 23), and save it. This will
only print the message at the
bottom on the screen once the
button has been pressed. The
program is then ended.

>STEP-04
Light an LED
Add a red LED to your breadboard,
using jumper wires to connect its
longer leg to the GPIO 25 pin, and
its shorter leg via a resistor to the
ground rail; your circuit should
resemble the diagram on page 19.
In a new Python 3 IDLE file, enter
the code from ch3listing3.py and
save it. At the top, we import
the LED and Button classes from
GPIO Zero, along with the pause
class from the signal module.
We then allocate variables to the

A second push
button is added for
the reaction game;
when pressed, GPIO
2 is pulled low

After a random
time, the LED is lit
and the first person
to hit their button is
the winner

22

ESSENTIALS

[Chapter One]

LED and button on GPIO pins 25 and 21 respectively. When the button
is pressed, the LED is turned on; when released, it’s turned off.

It’s also possible to keep the LED lit for a set period after pressing.
Open a new file, enter the code from ch3listing4.py (page 24), and save
it. This time, we wait for a button press as in step 3, then turn the LED
on for three seconds, then off.

>STEP-05
Reaction game
By adding a second push button to our circuit, we can make a simple
two-player reaction game. When the LED turns on at a random time,
the first person to hit their button is the winner. Position the extra
button on the breadboard as in the diagram on page 21, connecting it
to the ground rail and GPIO 2; move the LED and its connections to the
middle, if not there already. Open a new file in Python 3 IDLE, enter
the code from ch3listing5.py (page 24), and save it. At the top, we
import the classes required as before, along with the random module.
We assign variables to the LED and two buttons, then create a time
variable equal to a random number between 5 and 10; after sleeping for
this number of seconds, the LED is turned on. The while True: loop
is terminated with break when someone presses their button, after
printing the appropriate victory message.

22

Right
The LED is lit! In

this reaction game,
the first person to

now press their
button will win

[Chapter Three]

23

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import Button

button = Button(21)

while True:
 if button.is_pressed:
 print("Button is pressed")
 else:
 print("Button is not pressed")

ch3listing1.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Push Button]

from gpiozero import Button

button = Button(21)

button.wait_for_press()
print("Button was pressed")

ch3listing2.py

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(21)

button.when_pressed = led.on
button.when_released = led.off

pause()

ch3listing3.py

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwcLz

http://magpi.cc/2bhwcLz

24

ESSENTIALS

[Chapter One]24 [Chapter Three]

from gpiozero import LED, Button
from time import sleep

led = LED(25)
button = Button(21)

button.wait_for_press()
led.on()
sleep(3)
led.off()

ch3listing4.py

from gpiozero import Button, LED
from time import sleep
import random

led = LED(25)

player_1 = Button(21)
player_2 = Button(2)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
 if player_1.is_pressed:
 print("Player 1 wins!")
 break
 if player_2.is_pressed:
 print("Player 2 wins!")
 break

led.off()

ch3listing5.py

25

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[CHAPTER FOUR]

ESSENTIALS

MAKE A PUSH BUTTON

Use two or more tactile push buttons
to play different sound samples

MUSIC BOX

26

ESSENTIALS

[Chapter One]26 [Chapter Four]

o far, we’ve added a push button to a simple circuit to light an
LED, and then added a second button to make a reaction game.
In this chapter, we’ll use several push buttons to make a GPIO

music box that triggers different sounds when we press different buttons.
For this, we’ll make use of GPIO Zero’s Button class again, as well as using
the Python dictionary structure to assign sounds to buttons.

>STEP-01
Get some sounds
Before we start building our GPIO music box circuit, we’ll need to
prepare some sound samples for it to play. First, open a terminal
window and create a new folder called musicbox for this project: mkdir
musicbox. Then change to that directory: cd musicbox. Now we need
to source some sound samples. While there are many public domain
sounds to be found online, for this example we’ll use some of Scratch’s

S
> GPIO Zero

> 1× solderless
breadboard

> 2× push buttons

> 3× male-to-
female jumper
wires

> 2× male-to-male
jumper wires

> Headphones
or speaker

You’ll
 Need

Right
Each time you

press a button,
the assigned

sound sample will
play through a

connected speaker

27

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Music Box]

>STEP-02
Play a drum
We’ll now create a simple
Python program to play a drum
sample repeatedly, to check
everything is working. Open IDLE
from the Main Menu: Menu >
Programming > Python 3 (IDLE).
Create a new file by clicking File
> New File. Now enter the code
from the listing ch4listing1.py
(page 30), changing the WAV file
name to suit your own sample if
you’re using different ones. Save
the file in your musicbox folder
with File > Save.

At the start of the program,
we import the mixer module
from the Pygame library, then
its Sound class which enables
multichannel sound playback
in Python. Next, we add a line
to initialise the Pygame mixer:
pygame.mixer.init(). We then
create a Sound object for one of
the files in our samples folder:
drum = Sound("samples/
DrumBuzz.wav").

Finally, we add a while True:
loop to repeatedly play the
drum sound. Press F5 to run

When pressed, the
push button pulls
the connected
GPIO input pin
(pulled high by
default) low

built-in percussion sounds, already present on the Pi. In your
terminal, enter mkdir samples, then change to that directory:
cd samples. Now copy the Scratch percussion sounds with:

cp /usr/share/scratch/Media/Sounds/Percussion/* .

Both buttons (and
any more you want
to add) share a
common ground
connection via the
‘–’ rail

28

ESSENTIALS

[Chapter One]28 [Chapter Four]

the program and listen to it play. If you can’t hear it, you might need
to alter your audio configuration; in a terminal, enter amixer cset
numid=3 1 to switch it to the headphone socket, or amixer cset
numid=3 1 to switch to the HDMI output.

>STEP-03
Wire up a button
As usual, it’s best to turn the Raspberry Pi off while connecting our
circuit on the breadboard. First, we’ll add a single button. As before,
place the button so it straddles the central groove of the breadboard.
One leg is connected to GPIO pin 2, and the other to the common
ground rail on the breadboard, which in turn is wired to a GND pin.

We’ll now make a sound play whenever the button is pressed.
Open a new file in Python 3 IDLE, enter the code from ch4listing2.py
(page 31), and save it in your musicbox folder. At the start of the
program, we also import the Button class from GPIO Zero, and

Above Extra
buttons can easily

be added to the
circuit to play more
sounds assigned in

the Python code

29

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

the pause class from the signal library. We assign the button
variable to GPIO pin 2, with button = Button (2). We then tell the
sound to play when the button is pressed:

button.when_pressed = drum.play

Finally, we add pause() at the end so that the program will continue
to wait for the button to be pressed. Run the program and every time
you press the button, the drum sound should play.

>STEP-04
Add a second button
We’ll add a second button to the circuit, so it should now look like the
diagram on page 27. Place it on the breadboard as before, and wire it up
to GPIO 3 and the common ground rail. Now open a new file in Python
3 IDLE, enter the code from ch4listing3.py (page 31), and save it in your
musicbox folder. Note that rather than assigning the Button objects
and sounds to the pins individually, we’re using a dictionary structure
to assign their numbers to sound samples:

sound_pins = {
 2: Sound("samples/DrumBizz.wav"),
 3: Sound("samples/CymbalCrash.wav"),
}

We then create a list of buttons on all the pin numbers in the
sound_pins dictionary:

buttons = [Button(pin) for pin in sound_pins]

Finally, we create a for loop that looks up each button in the
dictionary and plays the appropriate sound:

for button in buttons:
 sound = sound_pins[button.pin.number]
 button.when_pressed = sound.play

Run the program and press each button to hear a different sound.

[Music Box]

30

ESSENTIALS

[Chapter One]

ch4listing1.py
import pygame.mixer
from pygame.mixer import Sound

pygame.mixer.init()

drum = Sound("samples/DrumBuzz.wav")

while True:
 drum.play()

>STEP-05
Add more buttons
The way we have structured the program makes it easy to add extra
buttons and assign them to sound samples. Just connect each button to
a GPIO number pin (not any other type) and the ground rail, as before.
Then add the GPIO pin numbers and sounds to the dictionary, as in the
following example:

sound_pins = {
 2: Sound("samples/DrumBizz.wav"),
 3: Sound("samples/CymbalCrash.wav"),
 4: Sound("samples/Gong.wav"),
 14: Sound("samples/HandClap.wav"),
}

30 [Chapter Four]

31

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

ch4listing1.py

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()
button = Button(2)
drum = Sound("samples/DrumBuzz.wav")

button.when_pressed = drum.play
pause()

ch4listing2.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Music Box]

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

sound_pins = {
 2: Sound("samples/DrumBuzz.wav"),
 3: Sound("samples/CymbalCrash.wav"),
}

buttons = [Button(pin) for pin in sound_pins]
for button in buttons:
 sound = sound_pins[button.pin.number]
 button.when_pressed = sound.play

pause()

ch4listing3.py

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwqlH

http://magpi.cc/2bhwqlH

32

ESSENTIALS

[Chapter One]

[CHAPTER FIVE]

ESSENTIALS

32 [Chapter Five]

RGB LED
Learn how to use an RGB LED and get it to show CPU load

MEASURE
CPU USAGE
WITH

AN

33

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

33

e lit up a standard LED in chapter 2, using GPIO Zero’s LED
class. It also features a special RGBLED class for controlling -
guess what - an RGB LED! In this chapter, we’ll make use of

this to light up our LED in different shades by altering the red, green,
and blue values. Then we’ll code up a little program that tracks the
Pi’s CPU usage percentage, and adjust the LED between green and red
accordingly to show how much processing power it’s using.

>STEP-01
Select your RGB LED
Light-emitting diodes (LEDs) are cool. Literally. Unlike a normal
incandescent bulb, which has a hot filament, LEDs produce light solely
by the movement of electrons in a semiconductor material. An RGB LED
has three single-colour LEDs combined in one package. By varying the
brightness of each component, you can produce a range of colours, just like
mixing paint. There are two main types of RGB LEDs: common anode and
common cathode. We’re going to use common cathode for this project.

W

[Measure CPU Usage with an RGB LED]

> GPIO Zero

> 1× solderless
breadboard

> 1× RGB LED

> 3× 100Ω resistor

> 4× male-to-
female jumper
wires

You’ll
 Need

 The resistors limit
the current flowing
through the LED and
prevent damage to
the Raspberry Pi

Common cathode
RGB LED. The
longest leg is the
cathode – connect
it to ground

34

ESSENTIALS

[Chapter One]34

Below By altering
the three RGB

values, you can
light the LED in any

shade you like

>STEP-02
Connect the RGB LED
As usual, it’s best to turn the Raspberry Pi off while connecting our
circuit on the breadboard. LEDs need to be connected the correct way
round. For a common cathode RGB LED, you have a single ground
wire – the longest leg – and three anodes, one for each colour. To
drive these from a Raspberry Pi, connect each anode to a GPIO pin via
a current-limiting resistor. When one or more of these pins is set to
HIGH (3.3V), the LED will light up the corresponding colour. Connect
everything as shown in the diagram on page 33.

Here, we wire the cathode (long leg) to a GND pin, while the other
legs are wired via resistors to GPIO 14, 15, and 18. The resistors are
essential to limit the amount of current flowing to the Pi, to avoid
damaging it; we’ve used 100Ω resistors, but you could get away with
using ones with a slightly higher ohmage, such as 330Ω.

[Chapter Five]

35

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

>STEP-03
Test the LED
With the RGBLED class in GPIO Zero, it’s easy to alter the colour
of the LED by assigning values of between 0 and 1 to red, green,
and blue. On the Pi, open IDLE from the Main Menu: Menu >
Programming > Python 3 (IDLE). Create a new file by clicking File
> New file, then enter the code from ch5listing1.py (on page 37)
and save it.

At the top, we import the RGBLED class from GPIO Zero, along
with the sleep class from the time library. We then assign the
variable led to the RGBLED class on GPIO pins 14, 15, and 18, for red,
green, and blue. We then make led.red equal to 1 to turn the LED
a full red colour. After a second, we then change the value to 0.5
to reduce its intensity. We then go through a sequence of colours
using led.color, assigning it a tuple of red, green, and blue values
to mix the shades. So, (1, 0, 1) shows full red and blue to make
magenta. You can vary each value between 0 and 1 to create an
almost infinite range of shades. Finally, we use a for loop to slowly
increase the intensity of blue.

[Measure CPU Usage with an RGB LED]

Left Here we’re
monitoring the
Pi’s CPU usage;
yellow means it’s at
about 50%

36

ESSENTIALS

[Chapter One]36

>STEP-04
Add a new library
We now want to get our RGB LED to change colour between green and
red, to show the CPU usage of the Raspberry Pi to which it’s connected,
so we can track how much of its processing power we’re using at any
time. For this, we’ll need the psutil library, which can be installed
from the terminal with:

sudo pip3 install psutil --upgrade

This will let us look up the CPU usage of the Raspberry Pi as a
percentage number, which can then be used in our code to vary
the LED’s colour.

>STEP-05
Measure CPU usage
In IDLE, create a new file, enter the code from ch5listing2.py, and save
it. At the top, we import the modules we need, including psutil. We then
assign the myled variable to the RGBLED class on GPIO 14, 15, and 18, for
red, green, and blue. In a never-ending while True: loop, we assign the
cpu variable to the percentage of CPU usage via psutil, then assign the
red and green LED values accordingly, and light the LED.

Try running the code. The LED should light up: its colour will indicate
how hard your Pi’s CPU is working. Green means less busy, turning
redder as the CPU becomes more heavily loaded. Start up some other
applications to test it. If you have an original Model B, you’ll probably
find that just running Minecraft is enough to turn the LED red. If you
have a Pi 3, you may need to start lots of things running in order to
have any impact!

>STEP-06
Customise your project
The example code only uses the red and green components of the LED:
the blue value is always set to zero. You could swap things around and
create a different colour gradient (e.g. blue to red), or put together a
fancy function that maps a percentage value onto all three colours.
Have fun with the colours and maybe even have it look at other
resources to monitor…

[Chapter Five]

37

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import RGBLED
from time import sleep

led = RGBLED(14,15,18)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):
 led.blue = n/100
 sleep(0.1)

ch5listing1.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import RGBLED
import psutil, time

myled = RGBLED(14,15,18)

while True:
 cpu = psutil.cpu_percent()
 r = cpu / 100.0
 g = (100 - cpu)/100.0
 b = 0
 myled.color = (r, g, b)
 time.sleep(0.1)

ch5listing2.py

[Measure CPU Usage with an RGB LED]

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwsdc

http://magpi.cc/2bhwsdc

38

ESSENTIALS

[Chapter One]

[CHAPTER SIX]

ESSENTIALS

38 [Chapter Six]

MOTION-
SENSING

Stop people from sneaking up on your stuff by
creating a motion-sensing alarm that buzzes
when it detects someone

MAKE A

ALARM

39

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

39

eed to protect your room or precious items from miscreants
or nosy family members? With just a PIR motion sensor and a
buzzer wired up to your Raspberry Pi, it’s very simple to create

an intruder alert. Whenever movement is detected in the area, a loud
beeping noise will raise the alarm. To take things further, you could
add a flashing LED, an external speaker to play a message, or even a
hidden Camera Module to record footage of intruders.

>STEP-01
Attach PIR motion sensor
First, we need to wire the PIR (passive infrared) sensor to the Pi.
While it could be hooked to the GPIO pins directly using female-to-
female jumper wires, we’re doing it via a breadboard. The sensor has
three pins: VCC (voltage supply), OUT (output), and GND (ground).
Use female-to-male jumpers to connect VCC to the ‘+’ rail of the
breadboard, and GND to the ‘–’ rail. Wire OUT to a numbered row,
then use another jumper to connect that row to GPIO pin 4.

N

> 1× HC-SR501
PIR sensor
magpi.cc/
1rwsEL7

> 1× Mini piezo
buzzer
magpi.cc/
1rwsXG2

> Jumper wires

You’ll
 Need

While the PIR is
powered by 5V, its
output is 3.3V so no
resistor is required

The PIR sensor
detects motion via
changes in the levels
of infrared radiation

The mini piezo
buzzer beeps an
audible alarm when
motion is detected

[Motion-Sensing Alarm]

http://magpi.cc/1rwsEL7
http://magpi.cc/1rwsEL7
http://magpi.cc/1rwsEL7
http://magpi.cc/1rwsEL7

40

ESSENTIALS

[Chapter One]40 [Chapter Six]

>STEP-02
Wire up the buzzer
Next, we’ll hook up the mini buzzer. Place its two legs across the central
groove in the breadboard. Note that the longer leg is the positive pin; wire
its numbered row to GPIO pin 3 on the Pi to connect it. Wire the row of the
buzzer’s shorter leg to the ‘–’ rail, then connect the latter to a GND pin on
the Pi. Finally, connect the ‘+’ rail to the Pi’s 5V pin to power the PIR sensor.

>STEP-03
Work on the code
In IDLE, enter the code from ch6listing1.py. At the start, we import
the MotionSensor and Buzzer modules from GPIO Zero, each of which
contains numerous useful functions; we’ll need a few of them for our
intruder alarm. We also import the time library so that we can add a
delay to the detection loop. Next, we assign the relevant GPIO pins for
the PIR sensor and buzzer; we’ve used GPIO 4 and 3 respectively in this
example, but you could use alternatives if you prefer.

Above The
program uses an

infinite loop to
detect motion,

making the buzzer
beep whenever

that occurs

41

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

>STEP-04
Setting things up
Before starting our motion
detection while loop, we
make use of the GPIO Zero
library’s wait_for_no_
motion function to wait
for the PIR to sense no
motion. This gives you
time to leave the area, so
that it doesn’t immediately
sense your presence and
raise the alarm when you
run the code! Once the PIR
has sensed no motion in its
field of view, it will print
‘Ready’ on the screen and the
motion detection loop can
then commence.

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import
MotionSensor, Buzzer
import time

pir = MotionSensor(4)
bz = Buzzer(3)

print("Waiting for PIR to settle")
pir.wait_for_no_motion()

while True:
 print("Ready")
 pir.wait_for_motion()
 print("Motion detected!")
 bz.beep(0.5, 0.25, 8)
 time.sleep(3)

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwrWQ

ch6listing1.py

>STEP-05
Motion detection loop
Using while True: means this is an infinite loop that will run
continually, until you stop the program by clicking the ‘X’ icon of its
window or pressing CTRL+C on the keyboard. Whenever motion is
detected by the PIR sensor, we get the buzzer to beep repeatedly eight
times: 0.5 seconds on, 0.25 seconds off, but you can alter the timings.
We then use time.sleep(3) to wait 3 seconds before restarting the loop.

>STEP-06
Adjust the sensitivity
If you find that the alarm is going off too easily or not at all, you
may need to adjust the sensitivity of the PIR sensor. This is achieved
by using a small screwdriver to adjust the plastic screw of the left
potentiometer, labelled Sx; turn it anticlockwise to increase sensitivity.
The other potentiometer, Tx, alters the length of time the signal is sent
after detection; we found it best to turn it fully anticlockwise, for the
shortest delay of 1 second.

[Motion-Sensing Alarm]

http://magpi.cc/2bhwrWQ

42

ESSENTIALS

[Chapter One]

[CHAPTER SEVEN]

ESSENTIALS

42 [Chapter Seven]

RANGE
Link together an ultrasonic distance
sensor and seven-segment display
to measure distances

MAKE A

FINDER

43

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

43

he HC-SR04 ultrasonic distance sensor is a great favourite
with Pi robot-makers. It works by bouncing ultrasonic sound
off an object and timing how long it takes for the echo to

return. This time is then converted into a distance which can be
displayed on a single-digit, seven-segment display. Here you can
acquire the skills to handle inputs and outputs. You also get to use
seven-segment displays, which are quite cool in a retro kind of way.

>STEP-01
Lighting the display
The seven-segment display is a collection of LEDs, with one LED
corresponding to one of the segments. All the anodes (positive ends)
are connected together; this should be connected to the 3V3 supply.
The cathodes (negative ends) should be connected to a resistor to limit

T

[Range Finder]

You can use
any seven-
segment
display, but
alternatives
might have a
different pinout

> HC-SR04
ultrasonic
distance sensor
magpi.cc/
1YnqNCZ

> Broadcom 5082-
7650 7-segment
display
magpi.cc/
1YnqQPl

> 9× resistors
(7× 220Ω,
1x 512Ω, 1x kΩ)
magpi.cc/
1YnqU1r

You’ll
 Need

Ultrasonic distance
sensor: gives out a
pulse proportional to
any reflecting object
in front of it

http://magpi.cc/1YnqNCZ
http://magpi.cc/1YnqNCZ
http://magpi.cc/1YnqQPl
http://magpi.cc/1YnqQPl
http://magpi.cc/1YnqU1r
http://magpi.cc/1YnqU1r

44

ESSENTIALS

[Chapter One]44

the LED current, and the other end of the resistor to a GPIO pin. To turn
the LED on, all you have to do is set the GPIO output to be LOW (0V)
and it will complete the circuit for the current to flow.

>STEP-02
Generating a seven-segment pattern
The display consists of four bars or segments that can be lit. By choosing
the segments to light up, you can display a number from 0 to 15, although
you have to resort to letters (also known as hexadecimal numbers) for
this. There are, in fact, 128 different patterns you can make, but most
are meaningless. In our code (ch7listing1.py overleaf), a list called seg
defines what pins are connected to what segments, and another list called
segmentPattern defines the LED pattern for each number.

>STEP-03
Displaying numbers
The display function sets up the segments to display any single-digit
number passed to it. First, it sets all the segments to off, and then if the
number is less than 16, it goes through the entries in the segmentPattern

[Chapter Seven]

45

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

list for that number and turns on the appropriate segments. Note
that we can still use on and off even though they’re not powered by
individual GPIO pins, because the LEDs were declared to GPIO Zero
as active_high = False.

>STEP-04
The distance sensor
The HC-SR04 distance sensor signals its reading by producing an output
pulse that the Pi tries to measure. The GPIO Zero library measures this
pulse and converts it into a distance by returning a floating-point number
that maxes out at 1 metre. We then multiply this number by 10 to give
decimetres. Next, we convert it to an integer to get rid of the fractional
part of the measurement, so we can show it on our single-digit display.

>STEP-05
Building the project
For our build, we used a dinky little breadboard shield from Dtronixs.
This allowed for a much more compact arrangement than a conventional
breadboard, although you can of course still use one. As the HC-SR04 uses
a 5V power supply, the pulse we have to measure is also nominally 5V.
Therefore, this has to be cut down to 3V3 by using a 512Ω and 1kΩ resistor
voltage divider.

>STEP-06
Using the sensor
The distance to the reflective object
is updated every 0.8 seconds. If this
is greater than a metre, then the
display will be blank. A display of
0 indicates that the object is less
than 10cm away. Don’t touch the
sensor, otherwise its readings will
be wrong. Also, as it has quite a
wide beam, you can get reflections
from the side. If several objects
are in the field of view, then
the distance to the closest one
is returned.

[Range Finder]

Below The project
in action; the Pi is
measuring how
far it is to the
Raspberry Pi 3 box

46

ESSENTIALS

[Chapter One]

ch7listing1.py
displays the distance in decimetres on a 7-segment display
from gpiozero import LED
from gpiozero import DistanceSensor
import time

seg = [LED(27,active_high=False),LED(25,active_high=False),LED(24,active_high=False),
 LED(23,active_high=False),LED(22,active_high=False),LED(18,active_high=False),
 LED(17,active_high=False)]

segmentPattern = [[0,1,2,3,4,5],[1,2],[0,1,6,4,3],[0,1,2,3,6],[1,2,5,6],[0,2,3,5,6], #0 to 5
 [0,2,3,4,5,6],[0,1,2],[0,1,2,3,4,5,6],[0,1,2,5,6],[0,1,2,4,5,6], #6 to A
 [2,3,4,5,6],[0,3,4,5],[1,2,3,4,6],[0,3,4,5,6],[0,4,5,6]] #B to F

sensor = DistanceSensor(15,4)

def main() :
 print("Display distance on a 7-seg display")

 while 1:
 distance = sensor.distance * 10 # distance in decimeters
 print("distance",distance)
 if distance >= 10.0:
 distance = 16.0
 display(int(distance))
 time.sleep(0.8)

def display(number):
 for i in range(0,7):
 seg[i].off()
 if number < 16:
 for i in range(0,len(segmentPattern[number])):
 seg[segmentPattern[number][i]].on()

Main program logic:
if __name__ == '__main__':
 main()

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2aNx9yf

46 [Chapter Seven]

http://magpi.cc/2aNx9yf

47

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[CHAPTER EIGHT]

ESSENTIALS

MAKE A LASER

Learn how to use an LDR to detect
a laser pointer beam

TRIPWIRE

48

ESSENTIALS

[Chapter One]48 [Chapter Eight]

he Raspberry Pi can easily detect a digital input via its GPIO
pins: any input that’s approximately below 1.8V is considered
off, and anything above 1.8V is considered on. An analogue

input can have a range of voltages from 0V up to 3.3V, however, and the
Raspberry Pi is unable to detect exactly what that voltage is. One way of
getting around this is by using a capacitor and timing how long it takes
to charge up above 1.8V. By placing a capacitor in series with a light-
dependent resistor (LDR), the capacitor will charge at different speeds
depending on whether it’s light or dark. We can use this to create a
laser tripwire!

>STEP-01
Connect the LDR
An LDR (also known as a photocell) is a special type of electrical
resistor whose resistance is very high when it’s dark, but reduced
when light is shining on it. With the Raspberry Pi turned off, place
your LDR into the breadboard, then add the capacitor. It’s essential to

T

> GPIO Zero

> 1× solderless
breadboard

> 1× light-
dependent
resistor (LDR)

> 1× 1μF capacitor

> 1× laser pointer

> 5× male-to-
female jumper
wires

> 5× female-to-
female jumper
wires (optional)

> 1× drinking straw

> 1× plastic box

You’ll
 Need

 The LDR is connected to a
capacitor: the time taken to
charge this can be measured

The light-dependent resistor
(LDR) has lower resistance
when light is shining on its head

49

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Make a Laser Tripwire]

get the correct polarity for the latter component: its longer (positive)
leg should be in the same breadboard column as one leg of the LDR.
Now connect this column (with a leg of both components) to GPIO 4.
Connect the other leg of the LDR to a 3V3 pin, and the other leg of the
capacitor to a GND pin. Your circuit should now resemble the diagram
on page 48.

>STEP-02
Test the LDR
On the Pi, open IDLE from the Main Menu: Menu > Programming >
Python 3 (IDLE). Create a new file by clicking File > New File, enter the
code from ch8listing1.py (page 52), then save it. At the start, we import
the LightSensor class from GPIO Zero. We then assign the variable
ldr to the LDR input on the GPIO 4 pin. Finally, we use a never-ending
while True: loop to continually display the current value of the light
sensed by the LDR, which ranges from 0 to 1. Try running the code and
then shining your laser pointer on it to vary the light level.

Above
Shining the laser
onto the LDR in a
darkened room will
dramatically affect
the measured
light level

50

ESSENTIALS

[Chapter One]50

>STEP-03
Enclose the LDR
Unless you’re working in a darkened room, you’ll probably notice little
difference between the measured light level when the laser pointer is
directed onto the LDR and when it’s not. This can be fixed by reducing
the amount of light that the LDR receives from other light sources in
the room, which will be essential for our laser tripwire device to work
effectively. We’ll achieve this by cutting off a short section – between
2cm and 5cm – of an opaque drinking straw, and inserting the head
of the LDR into one end. Now try the test code again and see how the
measured light level changes when you shine the laser pointer into the
other end of the straw. You should notice a larger difference in values.

>STEP-04
Wire up the buzzer
To create an audible alarm for our laser tripwire, we’ll add a piezo
buzzer to the circuit. Again, the polarity has to be correct: connect the
column of the buzzer’s longer leg to GPIO 17, and the shorter leg to a
GND pin. Let’s test it’s working. In IDLE, create a new file, enter the
code from ch8listing2.py (page 52), and save it. At the top, we import

The light-dependent
resistor (LDR) has
lower resistance
when the laser is
shining onto it

By timing how long it
takes to charge the
capacitor, we can
work out the light
level on the LDR

A simple piezo
buzzer is made to
beep whenever the
laser tripwire beam
is broken

[Chapter Eight]

51

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

the Buzzer class from GPIO Zero. Next, we assign the buzzer
variable to the buzzer output on GPIO 17. Finally, we use buzzer.beep
to make the buzzer turn on and off repeatedly at the default length
of 1 second. To stop it, close the Python shell window when it’s off.

>STEP-05
Test the tripwire
We’ll now put everything together so that the laser pointer shines at the
LDR (through the straw) and whenever the beam is broken, the buzzer
sounds the alarm. In IDLE, create a new file, enter the code from
ch8listing 3.py (page 52), and save it. At the start, we import the Buzzer
and LightSensor classes from GPIO Zero. We also import the sleep class
from the time library; we’ll need this to slow the script down a little to give
the capacitor time to charge. As before, we assign variables for the buzzer
and LDR to the respective devices on GPIO pins 4 and 17. We then use a
while True: loop to continually check the light level on the LDR; if it falls
below 0.5, we make the buzzer beep. You can change this number to adjust
the sensitivity; a higher value will make it more sensitive. Try running the
code; if you break the laser beam, the buzzer should beep for 8 seconds. You
can adjust this by altering the buzzer.beep parameters and sleep time.

>STEP-06
Package it up
Once everything is working well, you can enclose your Raspberry Pi
and breadboard in a plastic box (such as an old ice cream tub), with the
drinking straw poking through a hole in the side. If you prefer, you can
remove the breadboard and instead connect the circuit up directly by
poking the legs of the components
into female-to-female jumper
wires, with the long capacitor leg
and an LDR leg together in one
wire end, connected to the relevant
pins. Either way, place the tub near
a doorway with the laser pointer
on the other side, with its beam
shining into the straw. Run your
code and try walking through the
doorway: the alarm should go off!

[Make a Laser Tripwire]

Below
Place your laser
tripwire across a
doorway; when
someone breaks
the beam, the
alarm will sound

52

ESSENTIALS

[Chapter One]

from gpiozero import LightSensor

ldr = LightSensor(4)

while True:
 print(ldr.value)

ch8listing1.py

52 [Chapter Eight]

from gpiozero import Buzzer

buzzer = Buzzer(17)
buzzer.beep()

ch8listing2.py

from gpiozero import LightSensor, Buzzer
from time import sleep

ldr = LightSensor(4)
buzzer = Buzzer(17)

while True:
 sleep(0.1)
 if ldr.value < 0.5:
 buzzer.beep(0.5, 0.5, 8)
 sleep(8)
 else:
 buzzer.off()

ch8listing3.py

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhxwxC

http://magpi.cc/2bhxwxC

53

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[CHAPTER NINE]

ESSENTIALS

BUILD AN

Use potentiometers to control an
LED and tune in to radio stations

INTERNET
RADIO

54

ESSENTIALS

[Chapter One]54 [Chapter Nine]

nother way for the Raspberry Pi to detect analogue inputs is
by using an analogue-to-digital converter (ADC) chip, such as
the MCP3008. The latter offers eight input channels to connect

sensors and other analogue inputs. In this tutorial, we’ll hook up a
potentiometer to an MCP3008, to control the brightness of an LED by
turning the knob. We’ll then add a second potentiometer and create an
internet radio, using the two potentiometers to switch the station and
alter the volume.

>STEP-01
Enable SPI
The analogue values from the ADC chip will be communicated to the Pi
using the SPI protocol. While this will work in GPIO Zero out of the box,
you may get better results if you enable full SPI support. To do this,
open a terminal window and enter:

sudo apt-get install python3-spidev python-spidev

Click OK and reboot the Pi.

A
> GPIO Zero

> 1× solderless
breadboard

> 1× MCP3008
ADC chip

> 2×
potentiometers

> 1× LED

> 1× 330Ω resistor

> 7× male-to-
female jumper
wires

> 10× male-to-male
jumper wires

You’ll
 Need

The MCP3008
ADC chip
straddles the
central groove;
the side shown
without wires
comprises eight
input channels

Four legs are
connected to
special GPIO pins,
while the rest
are hooked up to
the power and
ground rails

55

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Build an Internet Radio]

Left
By turning the
potentiometer
knob, we can
adjust the
brightness
of the LED

>STEP-02
Connect the ADC
As usual, it’s best practice to turn off the Pi while creating our circuit.
As you can see from the diagram, there’s quite a lot of wiring required
to connect the MCP3008 ADC to the Pi’s GPIO pins. As an alternative,
you could use an Analog Zero (magpi.cc/2aey1b6), which provides the
MCP3008 chip on a handy add-on board.

First, place the MCP3008 in the middle of the breadboard,
straddling its central groove. Now connect the jumper wires as in
the diagram. Two go to the ‘+’ power rail, connected to a 3V3 pin;
two others are connected to a GND pin via the ‘–’ rail. The four
middle legs of the ADC are connected to GPIO pins 8 (CE0), 10 (MOSI),
9 (MISO), and 11 (SCLK).

>STEP-03
Read the value
Now the ADC is connected to the Pi, you can wire devices up to its eight
input channels (numbered 0 to 7). Here, we’ll connect a potentiometer,
which is a variable resistor: as you turn its rotary knob, the Pi reads the
voltage (from 0V to 3.3V). We can use this for precision control of other

56

ESSENTIALS

[Chapter One]56 [Chapter Nine]

components, such as an LED. As in
the diagram, connect one outer leg
of the potentiometer (top-right)
to the ‘–’ ground rail, the other
side to the ‘+’ power rail, and the
middle leg to the first input of the
MCP3008: channel 0.

>STEP-04
Read the value
We can now read the
potentiometer’s value in
Python. On the Pi, open IDLE
from the Main Menu: Menu >
Programming > Python 3 (IDLE).
Create a new file by clicking File
> New file, then enter the code
from ch9listing1.py (page 59),
and save it. At the top we import
the MCP3008 class from GPIO
Zero, then assign the pot variable
to the ADC’s channel 0. A while
True: loop then continuously
displays the potentiometer’s
value (from 0 to 1) on the screen;
try turning it as the code runs,
to see the number alter.

Connected to channel 1 of
the MCP3008, the second
potentiometer adjusts the
volume of our radio

The LED is connected as
normal, with its long leg wired
to GPIO 21 and the other to the
ground rail via a resistor

>STEP-05
Light an LED
Next, we’ll add an LED to the circuit as in the diagram, connecting
its longer (positive) leg to GPIO 21, and its shorter leg via a resistor
to the ‘–’ ground rail. In IDLE, create a new file, enter the code from
ch9listing2.py (page 59), and save it. At the start, we import the

This potentiometer is
connected to channel 0
of the MCP3008; on our
radio, it’s used to switch
the station

57

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Build an Internet Radio]

Left Some serious
spaghetti wiring
is required;
alternatively,
you could use an
Analog Zero board
to reduce this

MCP3008 and PWMLED classes. The latter enables us to control the
brightness of an LED using pulse-width modulation (PWM). We create
a PWMLED object on GPIO 21, assigning it to the led variable. We assign
our potentiometer to channel 0, as before. Finally, we use GPIO Zero’s
clever source and values system to pair the potentiometer with the
LED, to continuously set the latter’s brightness level to the former’s
value. Run the code and turn the knob to adjust the LED’s brightness.

>STEP-06
Add a second pot
Let’s add a second potentiometer to our circuit as in the diagram,
with its middle leg connected to channel 1 of the MCP3008. We’ll now
use both potentiometers to control our LED’s blink rate. In IDLE, create
a new file, enter the code from ch9listing3.py (page 59), and save it.
Here, we create two separate pot1 and pot2 variables, assigned to the
ADC’s channels 0 and 1 respectively. In a while True: loop, we then
print the two values on the screen and make the LED blink, with its on
and off times affected by our two potentiometers. Run the code and
twist both knobs to see how it changes.

58

ESSENTIALS

[Chapter One]58 [Chapter Nine]

>STEP-07
Install mplayer
We’ll use the same circuit to create a simple internet radio, with one
potentiometer used to switch the station and the other to adjust the
volume. First, we’ll need to install the MPlayer media player to be able
to play M3U internet radio streams, since Omxplayer can’t do this.
Open a terminal window and enter:

sudo apt-get install mplayer

>STEP-08
Make the radio
Open IDLE, create a new file, enter the code from ch9listing4.py (page
60), and save it. At the start, we import the MCP3008 class, along with
the time and os libraries; the latter will enable us to start MPlayer by
sending commands directly to the terminal. We create variables for
the station and volume dials, on ADC channels 0 and 1 respectively.
We then assign variables to two radio stream URLs, for Magic and BBC
Radio 1, and assign the current_station variable to the latter.

Next, we create a function called change_station which includes
an if condition, so it only triggers when the station set by the first
potentiometer position is different from the currently selected one
(current_station). If so, it stops the current stream and starts
playing the new one, before reassigning the current_station
variable to it.

Finally, in a while True: loop, we set the audio volume to the
value of the second potentiometer using amixer; we’ve assigned
a minimum value of 65%, but you can alter this. It then checks
whether the first potentiometer is below or above 0.5 and calls the
change_station function.

Run the code and try turning both potentiometers to switch the
station and adjust the volume. To keep things simple, we’ve only
used two radio stations in this example, but you could easily add more.

59

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import MCP3008

pot = MCP3008(channel=0)

while True:
 print(pot.value)

ch9listing1.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Build an Internet Radio]

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(21)

led.source = pot.values

ch9listing2.py

from gpiozero import MCP3008, PWMLED

pot1 = MCP3008(0)
pot2 = MCP3008(1)
led = PWMLED(21)

while True:
 print(pot1.value, pot2.value)
 led.blink(on_time=pot1.value, off_time=pot2.value, n=1, background=False)

ch9listing3.py

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2aNxLUM

http://magpi.cc/2aNxLUM

60

ESSENTIALS

[Chapter One]

from gpiozero import MCP3008
import time
import os

station_dial = MCP3008(0)
volume_dial = MCP3008(1)

Magic = "http://tx.whatson.com/icecast.php?i=magic1054.mp3.m3u"
Radio1 = "http://www.listenlive.eu/bbcradio1.m3u"

current_station = Radio1

def change_station(station):
 global current_station
 if station != current_station:
 os.system("killall mplayer")
 os.system("mplayer -playlist " + station + " &")
 current_station = station

while True:
 vol = (65 + volume_dial.value * 35)
 os.system("amixer set PCM -- " + str(vol) +"%")
 if station_dial.value >= 0.5:
 station = Magic
 change_station(station)
 elif station_dial.value < 0.5:
 station = Radio1
 change_station(station)
 time.sleep(0.1)

ch9listing4.py

60 [Chapter Nine]

61

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import MCP3008
import time
import os

station_dial = MCP3008(0)
volume_dial = MCP3008(1)

Magic = "http://tx.whatson.com/icecast.php?i=magic1054.mp3.m3u"
Radio1 = "http://www.listenlive.eu/bbcradio1.m3u"

current_station = Radio1

def change_station(station):
 global current_station
 if station != current_station:
 os.system("killall mplayer")
 os.system("mplayer -playlist " + station + " &")
 current_station = station

while True:
 vol = (65 + volume_dial.value * 35)
 os.system("amixer set PCM -- " + str(vol) +"%")
 if station_dial.value >= 0.5:
 station = Magic
 change_station(station)
 elif station_dial.value < 0.5:
 station = Radio1
 change_station(station)
 time.sleep(0.1)

[CHAPTER TEN]

ESSENTIALS

CREATE AN LED
Read a temperature sensor and
display its value as a bar graph

THERMOMETER

62

ESSENTIALS

[Chapter One]62 [Chapter Ten]

ontinuing the theme of analogue inputs, we’ll use the
MCP3008 analogue-to-digital converter (ADC) again and this
time hook it up to a temperature sensor. We’ll display the

current temperature on the screen, then add some LED’s and use GPIO
Zero’s handy LEDBarGraph class to get them to light up according to
the temperature.

>STEP-01
Enable SPI
As in chapter 9, the analogue values from the ADC chip will be
communicated to the Pi using the SPI protocol. While this will work in GPIO
Zero out of the box, you may get better results if you enable full SPI support.
If you haven’t done this already, open a terminal window and enter:

sudo apt-get install python3-spidev python-spidev

Click OK and reboot the Pi.

C

> GPIO Zero

> 1× solderless
breadboard

> 1× MCP3008
ADC chip

> 1× TMP36
temperature
sensor

> 5× LEDs (red,
yellow, green)

> 5× 330Ω resistor

> 1× 1uF capacitor

> 11× male-to-
female jumper
wires

> 8× male-to-male
jumper wires

You’ll
 Need

Right The TMP36
temperature

sensor (bottom-
right) is connected

to an input
channel of the
MCP3008 chip

63

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Create an LED Thermometer]

>STEP-02
Connect the ADC
If you already have the MCP3008 wired up from chapter 9, leave it in
place, straddling the central groove of the breadboard. As noted before,
there’s quite a lot of wiring required; as an alternative, you could use
an Analog Zero (magpi.cc/2aey1b6) add-on board to cut down on this.
Otherwise, connect the jumper wires as in the diagram. Two go to the
‘+’ power rail, connected to a 3V3 pin; two others are connected to a
GND pin via the ‘–’ rail. The four middle legs of the ADC are connected
to GPIO pins 8 (CE0), 10 (MOSI), 9 (MISO), and 11 (SCLK).

>STEP-03
Add the sensor
Now that the ADC is connected to the Pi, you can wire devices up to its
eight input channels, numbered 0 to 7. Here, we’ll connect a TMP36

It’s vital to get the wiring
correct for the TMP36
sensor, otherwise
it will overheat

Link the sensor’s ground
and output pins with
a capacitor to help
stabilise its readings

The MCP3008 ADC chip
straddles the central groove;
the side shown without wires
comprises eight input channels

http://magpi.cc/2aey1b6

64

ESSENTIALS

[Chapter One]

analogue temperature sensor. It’s vital that this is wired up correctly,
otherwise it’ll overheat. With its flat face towards you, the left-hand
leg is for power, so connect this to the ‘+’ power rail. The right-hand
leg is connected to the ‘–’ ground rail. Its middle leg is the output;
here we’re connecting to channel 7 (the nearest one) of the MCP3008.
Finally, to help stabilise the readings which might otherwise be erratic,
we’ll add a capacitor to link its output and ground legs.

>STEP-04
Take the temperature
We can now read the sensor’s value in Python. On the Pi, open IDLE
from the Main Menu: Menu > Programming > Python 3 (IDLE). Create
a new file, enter the code from ch10listing1.py (page 66), and save
it. At the top we import the MCP3008 class from GPIO Zero, then the
sleep class from the time library. Next, we define a function that

64 [Chapter Ten]

We use five LEDs to display
a bar graph relating to the
temperature; each LED is
connected to a different GPIO pin

Each LED’s shorter leg is
connected to the ground
rail via a resistor, to limit
the current

65

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

Above
When we run the
final code, the LEDs
light up to indicate
the temperature
read by the sensor

[Create an LED Thermometer]

converts the sensor reading into degrees Celsius. We then assign the
adc variable to channel 7 of the MCP3008. Finally, we use a for loop
to display the converted temperature on the screen, updating it every
second. Note: if you’ve just been handling the sensor, it might take a
little while to settle down.

>STEP-05
LED bar graph
Next, we’ll add our line of five LEDs to the circuit, as in the diagram.
From green to red, we’ve connected their longer legs to the following
GPIO pins: 26, 19, 13, 6, and 5. In IDLE, create a new file, enter the
code from ch10listing2.py (page 67), and save it. At the start, we
import the LEDBarGraph class from GPIO Zero; this will enable us to
use the LEDs to display a bar graph, saving a lot of complex coding.
We assign the graph variable to our LEDs on the GPIO pins mentioned
previously, and also enable PWM so that we can adjust their
brightness for a more accurate display. We then set graph.value
to various fractions between 0 and 1 to light the relevant number of

66

ESSENTIALS

[Chapter One]

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
 for value in gen:
 yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=7)

for temp in convert_temp(adc.values):
 print("The temperature is", temp, "C")
 sleep(1)

ch10listing1.py

66

LEDs from green to red, including partially lit ones for precision. Note
that if the value is negative, it will light the LEDs from the other end,
red ones first.

>STEP-06
Display the temperature
So, we’ve got our temperature sensor and LED bar graph set up; let’s
combine them to display the temperature on the LED bar graph. In
IDLE, create a new file, enter the code from ch10listing 3.py, and
save it. At the top, we import GPIO Zero’s MCP3008 and LEDBarGraph
classes, along with the sleep class from the time library. As in our
original code, we then define a function to convert the temperature
sensor’s readings to degrees Celsius. We assign the adc variable to
channel 7 of the MCP3008 and graph to our LEDs’ GPIO pins, setting
PWM to true. Finally, in our for loop, we add a bars variable to
determine how many LEDs are lit in the bar graph. In this example,
we’ve divided temp by 35, which is around the maximum temperature
for the UK, so if it gets to 35°C, all the LEDs should light up fully.
Naturally, you can adjust this number to suit your own location’s
climate. When ready, run the code and see those LEDs light up to
show the current temperature.

[Chapter Ten]

67

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
 for value in gen:
 yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=7)

for temp in convert_temp(adc.values):
 print("The temperature is", temp, "C")
 sleep(1)

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwQbJfrom gpiozero import LEDBarGraph

from time import sleep

graph = LEDBarGraph (26, 19, 13, 6, 5, pwm=True)

graph.value = 1/10
sleep(1)
graph.value = 3/10
sleep(1)
graph.value = -3/10
sleep(1)
graph.value = 9/10
sleep(1)
graph.value = 95/100
sleep(1)
graph.value = 0

ch10listing2.py

from gpiozero import MCP3008, LEDBarGraph
from time import sleep

def convert_temp(gen):
 for value in gen:
 yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=7)
graph = LEDBarGraph (26, 19, 13, 6, 5, pwm=True)

for temp in convert_temp(adc.values):
 bars = temp / 35
 graph.value = bars
 sleep(1)

ch10listing3.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Create an LED Thermometer]

http://magpi.cc/2bhwQbJ

68

ESSENTIALS

[Chapter One]

[CHAPTER ELEVEN]

ESSENTIALS

68 [Chapter Eleven]

GPIO ZERO
Control DC motors with GPIO Zero

and build a Pi Zero robot

BUILD A

ROBOT

69

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

69

aspberry Pi robotics is a popular pastime, but has previously
required some complex coding to steer your bots. Fortunately,
GPIO Zero makes it much simpler with its Motor and Robot

classes. We have a play around with these at the start of our guide
to control a couple of DC motors, before showing you how to build
and program a two-wheeled ZeroBot using a Pi Zero and two stepper
motors for precision control.

>STEP-01
Connect DC motors
To enable the Raspberry Pi to control DC motors, an H-bridge motor
driver board is required; you should never connect motors directly
to the Pi, as this is likely to damage the latter. There are numerous

R

[GPIO Zero Robot]

Used to detect obstacles, the
HC-SR04 ultrasonic sensor is
connected via a mini breadboard

> GPIO Zero

> 1× 3D-printed
KOROBOT shell
and wheels,
or some craft
materials
magpi.cc/
1PCfwMK

> 1×HC-SR04
ultrasonic
sensor
magpi.cc/
1PCfAMs

> 2× 28BYJ-48
stepper motors
& ULN2003A
driver boards
magpi.cc/
1PCfCE3

> 1× half-size
solderless
breadboard

> Mobile power
bank

> Various jumper
wires

> 2× DC motors
and wheels
(optional, for
steps 1-3)

You’ll
 Need

Each stepper motor is wired to a driver
board which is then connected to four
GPIO pins on the Pi

http://magpi.cc/1PCfwMK
http://magpi.cc/1PCfwMK
http://magpi.cc/1PCfAMs
http://magpi.cc/1PCfAMs
http://magpi.cc/1PCfCE3
http://magpi.cc/1PCfCE3

70

ESSENTIALS

[Chapter One]70 [Chapter Eleven]

motor drivers available; for steps 1-3 of this guide, we’re using the one
supplied in the popular CamJam EduKit #3 (magpi.cc/2algEVU), which
fits onto the Pi’s GPIO header. Each motor is connected by two wires
going to positive and negative terminals on the driver board, which is
hooked up to a power supply such as a battery box or a 5V pin on the
Pi. Either way, the Raspberry Pi itself is normally powered separately,
using a mobile power bank if you want to use your robot untethered.

>STEP-02
Run a motor
GPIO Zero includes a Motor class for running bidirectional motors
connected via an H-bridge motor driver circuit. On the Raspberry Pi,
open IDLE from the Main Menu: Menu > Programming > Python 3
(IDLE). Create a new file by clicking File > New file, then enter the
code from ch11listing1.py (page 73). At the top, we import the Motor
class from GPIO Zero, along with sleep from time. We then assign the
motor variable to the Motor class on the two GPIO pins connected to

Above GPIO Zero’s
Robot class makes

it very easy to
control a two-

wheeled robot like
this one

http://magpi.cc/2algEVU

71

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[GPIO Zero Robot]

our motor: in this example, 8 and 7. When we use motor.forward(),
the motor should run forwards. Within the brackets, we can add a
speed between 0 and 1 (the default). Similarly, motor.backward
will run it backwards, while motor.stop will stop the motor if it’s
still running.

>STEP-03
Move a robot
While you can control your motors individually using the Motor class,
GPIO Zero also includes the Robot class for controlling a two-wheeled
robot. Assuming you have such a robot already assembled, open IDLE,
create a new file, enter the code from ch11listing2.py (page 74), and
save it. At the top, we import the Robot class from GPIO Zero, along
with sleep from the time library. We then assign the robot variable
to it, with the relevant GPIO pins for the left and right motors. We can
then run various commands to control it, including telling it to spin
left or right. In this example, we’re using a for loop with forward and
turn right directions to make it drive around in a square pattern; adjust
the time.sleep values to determine the square size. Try altering the
directions to make different patterns.

Note: To save plugging your robot’s Pi into a display each time, you
can SSH into it to control it from another computer, or even a tablet
or smartphone, connected to the same wireless network.

>STEP-04
Build a ZeroBot
Next, we’ll show you how to build a ZeroBot based on a Pi Zero and two
stepper motors. The 28BYJ-48 is a cheap but versatile stepper motor
that can normally be bought with a ULN2003A driver board for under
£4. Stepper motors can be programmed to move in discrete steps,
rather than just turned on/off like servos. Using the Pi Zero, you’ll be
able to control the speed and positioning of the motors very accurately.
To cause the motor to rotate, you provide a sequence of ‘high’ and ‘low’
levels to each of the four inputs. The direction can then be reversed by
reversing the sequence. In the case of the 28BYJ-48, there are four-
step and eight-step sequences. The four-step is faster, but the torque
is lower. The example code in ch11listing3.py (page 74) lets you specify
the number of steps through the seqsize variable.

72

ESSENTIALS

[Chapter One]72 [Chapter Eleven]

Each motor has a connector block at the end of its coloured wires that
slots into the white header on the ULN2003A. The GPIO pins controlling
that motor connect to the four input pins below the IC, while the 5V power
and ground connections go to the bottom two pins on the right.

>STEP-05
Eyes to see
We’ll give our ZeroBot some simple ‘eyes’ that allow it to detect
obstacles, courtesy of the HC-SR04 ultrasonic sensor. This has four
pins, including ground (GND) and 5V supply (VCC). Using Python,
you can tell the Pi to send an input signal to the Trigger Pulse Input
(TRIG) by setting a GPIO pin’s output to HIGH. This will cause the
sensor to send out an ultrasonic pulse to bounce off nearby objects.
The sensor detects these reflections, measures the time between the
trigger and returned pulse, and then sets a 5V signal on the Echo Pulse
Output (ECHO) pin. Python code can measure the time between output
and return pulses. Connect the HC-SR04 as shown in the diagram
(page 69). Its ECHO output is rated at 5V, which could damage the

Above
The diminutive

ZeroBot features
a Pi Zero, two

stepper motors,
and a 3D-printed

chassis

73

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

from gpiozero import Motor
from time import sleep

motor = Motor(forward=8, backward=7)

while True:
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

ch11listing1.py

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[GPIO Zero Robot]

Pi. To reduce this to 3V, use two resistors to create a simple voltage
divider circuit, as shown in the diagram.

Once you have all your components connected, you can test the code
on a bench before building the full robot. Point the ‘eyes’ away from you
and run the code. The red LEDs on the ULN2003As should flash and both
motors should start turning. Our example has the bot move in a square.
Check that the motors behave accordingly then rerun the code, but this
time place your hand a couple of centimetres in front of the HC-SR04
and check that everything stops.

>STEP-06
Give it a body
Now it’s time to give the bot a body. If you have access to a 3D printer,
you can print the parts for the ZeroBot. This design fits together
easily, although you do need to glue the chassis end-caps in place.
Alternatively, you could construct a similar design using reasonably
thick cardboard for the wheels and part of a plastic bottle as the main
tubular chassis. Use more cardboard for the end-caps.

Put your mobile power bank at the bottom of the chassis tube,
then attach the motors to the end-caps with screws. Next, place
the ULN2003A boards on top of the power bank, and then sit the
breadboard with the HC-SR04 ‘eyes’ on top. Finally, slot the Pi Zero
in at the back. All nice and cosy, and ready to roll!

74

ESSENTIALS

[Chapter One]

from gpiozero import Robot
from time import sleep

robot = Robot(left=(8, 7), right=(10, 9))

for i in range(4):
 robot.forward()
 sleep(1)
 robot.right()
 sleep(0.2)

ch11listing2.py

74 [Chapter Eleven]

import time, sys
import gpiozero as g0
from threading import Thread

sensor = g0.DistanceSensor(echo = 16, trigger = 20)

IN1_m1 = g0.OutputDevice(17)
IN2_m1 = g0.OutputDevice(18)
IN3_m1 = g0.OutputDevice(21)
IN4_m1 = g0.OutputDevice(22)
StepPins_m1 = [IN1_m1,IN2_m1,IN3_m1,IN4_m1] # Motor 1 GPIO
pins IN4_m2 = g0.OutputDevice(19)
IN3_m2 = g0.OutputDevice(13)
IN2_m2 = g0.OutputDevice(5)
IN1_m2 = g0.OutputDevice(6)
StepPins_m2 = [IN1_m2,IN2_m2,IN3_m2,IN4_m2] # Motor 2 GPIO
pins
Seq = [[1,0,0,1], # Define step sequence
 [1,0,0,0], # as shown in manufacturer’s datasheet
 [1,1,0,0],
 [0,1,0,0],
 [0,1,1,0],
 [0,0,1,0],
 [0,0,1,1],

ch11listing3.py

75

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[GPIO Zero Robot]

 [0,0,0,1]]
StepCount = len(Seq)
all_clear = True
running = True

def bump_watch(): # thread to watch for obstacles
 global all_clear
 while running:
 value = sensor.distance
 if value < 0.1: # trigger if obstacle within 10cm
 all_clear = False
 else:
 all_clear = True
def move_bump(direction='F', seqsize=1, numsteps=2052):
 counter = 0 # 2052 steps = 1 revolution for step size of 2
 StepDir = seqsize # Set to 1 or 2 for fwd, -1 or -2 for back
 if direction == 'B':
 StepDir = StepDir * -1
 WaitTime = 10/float(1000) # adjust this to change speed
 StepCounter = 0
 while all_clear and counter < numsteps: # only move if no obstacles
 for pin in range(0, 4):
 Lpin = StepPins_m1[pin]
 Rpin = StepPins_m2[pin]
 if Seq[StepCounter][pin]!=0: # F=fwd, B=back, L=left, R=right
 if direction == 'L' or direction == 'B' or direction == 'F':
 Lpin.on() # Left wheel only
 if direction == 'R' or direction == 'B' or direction == 'F':
 Rpin.on() # Right wheel only
 else:
 Lpin.off()
 Rpin.off()
 StepCounter += StepDir
 if (StepCounter>=StepCount): # Repeat sequence
 StepCounter = 0
 if (StepCounter<0):
 StepCounter = StepCount+StepDir
 time.sleep(WaitTime) # pause
 counter+=1
t1 = Thread(target=bump_watch) # run as separate thread
t1.start() # start bump watch thread
for i in range(4): # Draw a right-handed square
 move_bump('F',-2,4104)
 move_bump('R',-2,2052)

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2bhwBxf

http://magpi.cc/2bhwBxf

76

ESSENTIALS

[Chapter One]

[CHAPTER TWELVE]

ESSENTIALS

76 [Chapter Twelve]

QUICK
To help you get started with GPIO Zero, here’s a handy reference

guide to its many useful classes that make Python coding for

physical computing so much simpler

REFERENCE

77

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

77[Quick Reference]

Note that all GPIO
pin references
in this guide use
Broadcom (BCM)
numbering. Refer
to pinout.xyz for
more details.

[GPIO PIN
NUMBERS]

01. OUTPUT
DEVICES
GPIO Zero includes a range of classes that make it easy to control output components

such as LEDs, buzzers, and motors…

LED
gpiozero.LED(pin, active_high=True, initial_value=False)

Use this class to turn an LED on and off. The LED should have its longer
leg (anode) connected to a GPIO pin, and the other leg connected via
a limiting resistor to GND. The following example will light an LED
connected to GPIO 17:

from gpiozero import LED

led = LED(17)
led.on()

Methods:

on()
Turn the device on.

off()
Turn the device off.

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

78

ESSENTIALS

[Chapter One]78 [Chapter Twelve]

toggle()
Reverse the state of the device; if on, it’ll turn off, and vice versa.

is_lit
Returns True if the device is currently active, and False otherwise.

pin
The GPIO pin that the device is connected to.

PWMLED
gpiozero.PWMLED(pin, active_high=True,
initial_value=0, frequency=100)

This class is used to light an LED with variable brightness. As before, a
resistor should be used to limit the current in the circuit. The following
example will light an LED connected to pin 17 at half brightness:

from gpiozero import PWMLED

led = PWMLED(17)
led.value = 0.5

Methods:

on()
Turn the device on.

off()
Turn the device off.

blink(on_time=1, off_time=1, fade_in_time=0,
fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

79

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

pulse(fade_in_time=1, fade_out_time=1,
n=None, background=True)
Make the device fade in and out repeatedly.

toggle()
Toggle the state of the device. If it’s currently off (value is 0.0), this
changes it to ‘fully’ on (value is 1.0). If the device has a duty cycle
(value) of 0.1, this will toggle it to 0.9, and so on.

is_lit
Returns True if the device is currently active, and False otherwise.

pin
The GPIO pin that the device is connected to.

value
The duty cycle of the PWM device, from 0.0 (off) to 1.0 (fully on).

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

RGBLED
gpiozero.RGBLED(red, green, blue, active_high=True,
initial_value=(0, 0, 0), pwm=True)

As shown in chapter 5, this class is used to light a full-colour LED
(composed of red, green, and blue LEDs). Connect its longest leg
(cathode) to GND, and the other to GPIO pins via resistors (or use one
on the cathode). The following code will make the LED purple:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 0, 1)

Methods:

on()
Turn the device on: equivalent to setting the LED colour to white (1, 1, 1).

80

ESSENTIALS

[Chapter One]80 [Chapter Twelve]

off()
Turn the device off: equivalent to setting the LED colour to black
(0, 0, 0).

blink(on_time=1, off_time=1, fade_in_time=0, fade_
out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0),
n=None, background=True)
Make the device turn on and off repeatedly.

pulse(fade_in_time=1, fade_out_time=1, on_color=(1, 1,
1), off_color=(0, 0, 0), n=None, background=True)
Make the device fade in and out repeatedly.

toggle()
Toggle the state of the device. If it’s currently off (value is (0, 0,
0)), this changes it to ‘fully’ on (value is (1, 1, 1)). If the device
has a specific colour, this method inverts it.

color
Represents the color of the LED as an RGB 3-tuple of (red, green,
blue), where each value is between 0 and 1 if pwm=True,
and only 0 or 1 if not.
For example, purple is (1, 0, 1), yellow is (1, 1, 0),
and orange is (1, 0.5, 0).

is_lit
Returns True if the LED is currently active (not black)
and False otherwise.

Buzzer
gpiozero.Buzzer(pin, active_high=True,
initial_value=False)

This class is used to control a piezo buzzer. This example will sound
a buzzer connected to GPIO pin 3:

81

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

Methods:

on()
Turn the device on.

off()
Turn the device off.

beep(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

toggle()
Reverse the state of the device; if on, it’ll turn off, and vice versa.

is_active
Returns True if the device is currently active, and False otherwise.

pin
The GPIO pin that the device is connected to.

Motor
gpiozero.Motor(forward, backward, pwm=True)

This class will drive a generic motor connected via an H-bridge motor controller. The
following example will make a motor connected to GPIO pins 17 and 18 turn ‘forwards’:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

82

ESSENTIALS

[Chapter One]82 [Chapter Twelve]

Methods:

backward(speed=1)
Drive the motor backwards. Speed can be any value between 0 and 1
(if pwm=True).

forward(speed=1)
Drive the motor forwards. Speed can be any value between 0 and 1
(if pwm=True).

stop()
Stop the motor.

02. INPUT DEVICES
The GPIO Zero module includes a range of classes that make it easy to
obtain values from input devices such as buttons and sensors…

Button
gpiozero.Button(pin, pull_up=True, bounce_time=None)

Use this class with a simple push button or switch. The following
example will print a line of text when a button connected to GPIO
pin 4 is pressed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

83

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

Methods:

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout (in
seconds) is reached.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout
(in seconds) is reached.

when_pressed
The function to run when the device changes state from inactive
to active.

when_released
The function to run when the device changes state from active
to inactive.

when_held
The function to run when the device has remained active for
hold_time seconds.

hold_time
The length of time (in seconds) to wait after the device is activated,
until executing the when_held handler. If hold_repeat is True,
this is also the length of time between calls to when_held.

hold_repeat
If True, when_held will be executed repeatedly with hold_time
seconds between each call.

held_time
The length of time (in seconds) that the device has been held for.

is_held
When True, the device has been active for at least
hold_time seconds.

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

84

ESSENTIALS

[Chapter One]84 [Chapter Twelve]

is_pressed
Returns True if the device is currently active, and False otherwise.

pin
The GPIO pin that the device is connected to.

pull_up
If True, the device uses a pull up resistor to set the GPIO pin ‘high’
by default.

Line Sensor
gpiozero.LineSensor(pin)

This class is used to read a single pin line sensor, like the TCRT5000
found in the CamJam EduKit #3. The following example will print a line
of text indicating when the sensor (with its output connected to GPIO
pin 4) detects a line, or stops detecting one:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)
sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

Methods:

wait_for_line(timeout=None)
Pause the script until the device is deactivated, or the timeout
(in seconds) is reached.

wait_for_no_line(timeout=None)
Pause the script until the device is activated, or the timeout
(in seconds) is reached.

85

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

when_line
The function to run when the device changes state from active
to inactive.

when_no_line
The function to run when the device changes state from inactive
to active.

pin
The GPIO pin that the device’s output is connected to.

Motion Sensor
gpiozero.MotionSensor(pin, queue_len=1, sample_rate=10,
threshold=0.5, partial=False)

As shown in chapter 6, this class is used with a passive infrared (PIR)
sensor, such as the one found in the CamJam EduKit #2. The following
example will print a line of text when motion is detected by the sensor
(with its middle output leg connected to GPIO pin 4):

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

Methods:

wait_for_motion(timeout=None)
Pause the script until the device is activated, or the timeout
(in seconds) is reached.

wait_for_no_motion(timeout=None)
Pause the script until the device is deactivated, or the timeout
(in seconds) is reached.

86

ESSENTIALS

[Chapter One]86 [Chapter Twelve]

motion_detected
Returns True if the device is currently active, and False otherwise.

when_motion
The function to run when the device changes state from inactive
to active.

when_no_motion
The function to run when the device changes state from active
to inactive.

pin
The GPIO pin that the device’s output is connected to.

Light Sensor
gpiozero.LightSensor(pin, queue_len=5, charge_time_
limit=0.01, threshold=0.1, partial=False)

As shown in chapter 8. Connect one leg of the LDR to the 3V3 pin;
connect one leg of a 1µF capacitor to a ground pin; connect the other
leg of the LDR and the other leg of the capacitor to the same GPIO pin.
This class repeatedly discharges the capacitor, then times the duration
it takes to charge, which will vary according to the light falling on the
LDR. The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

Methods:

wait_for_dark(timeout=None)
Pause the script until the device is deactivated, or the timeout
(in seconds) is reached.

87

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

wait_for_light(timeout=None)
Pause the script until the device is activated, or the timeout
(in seconds) is reached.

light_detected
Returns True if the device is currently active, and False otherwise.

when_dark
The function to run when the device changes state from active to inactive.

when_light
The function to run when the device changes state from inactive to active.

pin
The GPIO pin that the device is connected to.

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

Distance Sensor
gpiozero.DistanceSensor(echo, trigger, queue_len=30,
max_distance=1, threshold_distance=0.3, partial=False)

As shown in chapter 7, this class is used with a standard HC-SR04
ultrasonic distance sensor, as found in the CamJam EduKit #3. Note:
to avoid damaging the Pi, you’ll need to use a voltage divider on the
breadboard to reduce the sensor’s output (ECHO pin) from 5V to 3.3V.
The following example will periodically report the distance measured
by the sensor in cm (with the TRIG pin connected to GPIO17, and ECHO
pin to GPIO18):

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=18, trigger=17)
while True:
 print('Distance: ', sensor.distance * 100)
 sleep(1)

88

ESSENTIALS

[Chapter One]88 [Chapter Twelve]

Methods:

distance
Returns the current distance measured by the sensor in metres.
Note that this property will have a value between 0 and max_
distance.

max_distance
As specified in the class constructor, the maximum distance that
the sensor will measure in metres.

threshold_distance
As specified in the class constructor, the distance (measured in
metres) that will trigger the when_in_range and when_out_of_
range events when crossed.

when_in_range
The function to run when the device changes state from active
to inactive.

when_out_of_range
The function to run when the device changes state from inactive
to active.

wait_for_in_range(timeout=None)
Pause the script until the device is deactivated, or the timeout
is reached.

wait_for_out_of_range(timeout=None)
Pause the script until the device is activated, or the timeout
is reached.

echo
Returns the GPIO pin that the sensor’s ECHO pin is connected to.

trigger
Returns the GPIO pin that the sensor’s TRIG pin is connected to.

89

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

SPI (serial peripheral interface) is a mechanism allowing compatible
devices to communicate with the Pi. GPIO Zero provides some classes
for devices, including a range of analogue-to-digital converters…

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

03. SPI DEVICES

[SPI ARGUMENTS]

When constructing an SPI device, there are two schemes
for specifying which pins it’s connected to…

1. You can specify port and device keyword arguments. The port

parameter must be 0; there’s only one user-accessible hardware SPI

interface on the Pi, using GPIO11 as the clock pin, GPIO10 as the MOSI

pin, and GPIO9 as the MISO pin. The device parameter must be 0 or 1. If

device is 0, the select pin will be GPIO8; if device is 1, the select pin will

be GPIO7.

2. Alternatively, you can specify clock_pin, mosi_pin, miso_pin, and

select_pin keyword arguments. In this case, the pins can be any four

GPIO pins. Remember that SPI devices can share clock, MOSI, and

MISO pins, but not select pins; the GPIO Zero library will enforce

this restriction.

You can’t mix these two schemes, but you can omit any arguments

from either scheme. The defaults are:

> port and device both default to 0.

> clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin

defaults to 9, and select_pin defaults to 8.

90

ESSENTIALS

[Chapter One]90 [Chapter Twelve]

Analogue-to-Digital Converters (ADCs)
MCP3001:
gpiozero.MCP3001(**spi_args)

MCP3002:
gpiozero.MCP3002(channel=0, differential=False, **spi_args)

MCP3004:
gpiozero.MCP3004(channel=0, differential=False, **spi_args)

MCP3008:
gpiozero.MCP3008(channel=0, differential=False, **spi_args)

MCP3201:
gpiozero.MCP3201(**spi_args)

MCP3202:
gpiozero.MCP3202(channel=0, differential=False, **spi_args)

MCP3204:
gpiozero.MCP3204(channel=0, differential=False, **spi_args)

MCP3208:
gpiozero.MCP3208(channel=0, differential=False, **spi_args)

MCP3301:
gpiozero.MCP3301(**spi_args)

MCP3302:
gpiozero.MCP3302(channel=0, differential=False, **spi_args)

MCP3304:
gpiozero.MCP3304(channel=0, differential=False, **spi_args)

GPIO Zero supports a range of ADC chips, with varying numbers of
bits (from 10-bit to 13-bit) and channels (1 to 8). As shown in chapters
9 and 10, numerous jumper wires are required to connect the ADC
via a breadboard to the Pi.

91

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

Methods:

channel
The channel to read data from. The MCP3008/3208/3304 have eight
channels (0-7), while the MCP3004/3204/3302 have four channels
(0-3), and the MCP3001/3201 only have one channel. The MCP3301
always operates in differential mode between its two channels, and
the output value is scaled from -1 to +1.

differential
If True, the device is operated in pseudo-differential mode. In this
mode, one channel (specified by the channel attribute) is read relative
to the value of a second channel, informed by the chip’s design.

value
The current value read from the device, scaled to a value between 0
and 1 (or -1 to +1 for devices operating in differential mode).

To make things even easier, GPIO Zero provides extra support for a range
of add-on devices and component collections…

04. BOARDS &
ACCESSORIES

LEDBoard
gpiozero.LEDBoard(*pins, pwm=False, active_high=True,
initial_value=False, **named_pins)

This class enables you to control a generic LED board or collection
of LEDs. The following example turns on all the LEDs on a board
containing five LEDs attached to GPIO pins 2 through 6:

92

ESSENTIALS

[Chapter One]92 [Chapter Twelve]

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

Methods:

on(*args)
Turn all the output devices on.

off(*args)
Turn all the output devices off.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_
time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

pulse(fade_in_time=1, fade_out_time=1, n=None,
background=True)
Make the device fade in and out repeatedly.

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off;
if it’s off, turn it on.

leds
A flat tuple of all LEDs contained in this collection (and all sub-
collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values
from source. Defaults to 0.01 seconds.

93

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

value
A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

values
An infinite iterator of values read from value.

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

LEDBarGraph
gpiozero.LEDBarGraph(*pins, initial_value=0)

As shown in chapter 10, this is a class for controlling a line of LEDs to represent a bar
graph. Positive values (0 to 1) light the LEDs from first to last. Negative values (-1 to 0)
light the LEDs from last to first. The following example demonstrates turning on the first
two and last two LEDs in a board containing five LEDs attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

Methods:

on()
Turn all the output devices on.

off()
Turn all the output devices off.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

94

ESSENTIALS

[Chapter One]

Methods:

These are the same as for the LEDBoard class.

94 [Chapter Twelve]

leds
A flat tuple of all LEDs contained in this collection (and all
sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds.

value
A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.
To light a particular number of LEDs, simply divide that number by
the total number of LEDs.

values
An infinite iterator of values read from value.

TrafficLights
gpiozero.TrafficLights(red=None, amber=None, green=None,
pwm=False, initial_value=False)

Extends LEDBoard for devices containing red, amber, and green LEDs (or
individual LEDs). The following example initialises a device connected to
GPIO pins 2, 3, and 4, then lights the amber LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

95

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

LedBorg
gpiozero.LedBorg(initial_value=(0, 0, 0), pwm=True)

Extends RGBLED for the PiBorg LedBorg, an add-on board containing a
very bright RGB LED. Since its GPIO pins are fixed, there’s no need to
specify them. The following example turns the LedBorg purple:

from gpiozero import LedBorg

led = LedBorg()
led.color = (1, 0, 1)

Methods:

These are the same as for the RGBLED class.

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

PiLITEr
gpiozero.PiLiter(pwm=False, initial_value=False)

Extends LEDBoard for the Ciseco Pi-LITEr, a strip of eight very
bright LEDs. The Pi-LITEr pins are fixed and therefore there’s no
need to specify them. The following example turns on all the LEDs
of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

Methods:

These are the same as for the LEDBoard class.

96

ESSENTIALS

[Chapter One]96 [Chapter Twelve]

Methods:

These are the same as for the LEDBoard class.

SnowPi
gpiozero.SnowPi(pwm=False, initial_value=False)

Extends LEDBoard for the Ryanteck SnowPi board. Since its pins are
fixed, there’s no need to specify them. The following example turns on
the eyes, sets the nose pulsing, and the arms blinking:

from gpiozero import SnowPi

snowman = SnowPi(pwm=True)
snowman.eyes.on()
snowman.nose.pulse()
snowman.arms.blink()

Methods:

These are the same as for the LEDBarGraph class.

PiLITEr Bar Graph
gpiozero.PiLiterBarGraph(pwm=False, initial_value=0.0)

Extends LEDBarGraph to treat the Ciseco Pi-LITEr as an eight-segment
bar graph. The Pi-LITEr pins are fixed and therefore there’s no need to
specify them. The following example sets the graph value to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

97

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

Methods:

These are the same as for the TrafficLights class.

PI-TRAFFIC
gpiozero.PiTraffic(pwm=False, initial_value=False)

Extends TrafficLights for the Low Voltage Labs Pi-Traffic, a vertical
traffic lights board, when attached to GPIO pins 9, 10, and 11.
The following example turns on the amber LED:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

Methods:

on()
Turn all the output devices on.

off()
Turn all the output devices off.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off;
if it’s off, turn it on.

TrafficLightsBuzzer
gpiozero.TrafficLightsBuzzer(lights, buzzer, button)

A generic class for HATs with traffic lights, a button, and a buzzer.

98

ESSENTIALS

[Chapter One]98 [Chapter Twelve]

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds.

value
A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

values
An infinite iterator of values read from value.

Methods:

These are the same as for the TrafficLightsBuzzer class.

Fish Dish
gpiozero.FishDish(pwm=False)

Extends TrafficLightsBuzzer for the Pi Supply Fish Dish, which
has traffic light LEDs, a button, and a buzzer. Since its pins are fixed,
there’s no need to specify them. The following example waits for the
button to be pressed on the Fish Dish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

99

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

Methods:

These are the same as for the TrafficLightsBuzzer class.

Traffic HAT
gpiozero.TrafficHat(pwm=False)

Extends TrafficLightsBuzzer for the Ryanteck Traffic HAT, which
has traffic light LEDs, a button, and a buzzer. Since its pins are fixed,
there’s no need to specify them. The following example waits for the
button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

Robot
gpiozero.Robot(left=None, right=None)

Designed to control a generic dual-motor robot (as in chapter 11),
this class is constructed with two tuples representing the forward
and backward pins of the left and right controllers respectively. For
example, if the left motor’s controller is connected to GPIOs 4 and 14,
while the right motor’s controller is connected to GPIOs 17 and 18, then
the following example will drive the robot forward:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.forward()

100

ESSENTIALS

[Chapter One]100 [Chapter Twelve]

Methods:

forward(speed=1)
Drive the robot forward by running both motors forward.

backward(speed=1)
Drive the robot backward by running both motors backward.

left(speed=1)
Make the robot turn left by running the right motor forward and left
motor backward.

right(speed=1)
Make the robot turn right by running the left motor forward and
right motor backward.

reverse()
Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half speed, it will turn right at half speed.
If the robot is currently stopped, it will remain stopped.

stop()
Stop the robot.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values
from source. Defaults to 0.01 seconds.

value
Represents the motion of the robot as a tuple of (left_motor_speed,
right_motor_speed), with (-1, -1) representing full speed backward,
(1, 1) representing full speed forward, and (0, 0) representing stopped.

values
An infinite iterator of values read from value.

101

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

Methods:

These are the same as for the Robot class.

Ryanteck MCB Robot
gpiozero.RyanteckRobot

Extends Robot for the Ryanteck MCB robot. Since its pins are fixed,
there’s no need to specify them when constructing this class. The
following example drives the robot forward:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.forward()

Methods:

These are the same as for the Robot class.

CamJam #3 Kit Robot
gpiozero.CamJamKitRobot

Extends Robot for the CamJam EduKit #3 robot. Since its pins are fixed,
there’s no need to specify them when constructing this class. The
following example drives the robot forward:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.forward()

102

ESSENTIALS

[Chapter One]102 [Chapter Twelve]

Methods:

is_active
Returns True if the device is currently active, and False otherwise.
This property is usually derived from value. Unlike value, this is
always a Boolean.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values
from source. Defaults to 0.01 seconds, which is generally sufficient
to keep CPU usage to a minimum while providing adequate
responsiveness.

values
An infinite iterator of values read from value.

Energenie
gpiozero.Energenie(socket=None, initial_value=False)

Designed to represent an Energenie socket controller, this class is
constructed with a socket number and an optional initial state (defaults
to False, meaning off). Instances of this class can be used to switch
peripherals on and off. For example:

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

103

 [SIMPLE ELECTRONICS WITH GPIO ZERO] [SIMPLE ELECTRONICS WITH GPIO ZERO]

[Quick Reference]

104

ESSENTIALS

[Chapter One]

> CONQUER THE COMMAND LINE

> EXPERIMENT WITH SENSE HAT

> MAKE GAMES WITH PYTHON

> CODE MUSIC WITH SONIC PI

AVAILABLE NOW:

LEARN | CODE | MAKE

ESSENTIALS

From the makers of the
official Raspberry Pi magazine

ESSENTIALS

105

 [SIMPLE ELECTRONICS WITH GPIO ZERO]

OUT NOW IN PRINT
ONLY £3.99
raspberrypi.org/magpi

GET THEM
DIGITALLY:

from

https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
http://raspberrypi.org/magpi
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

ESSENTIALS

raspberrypi.org/magpi

http://www.raspberrypi.org/magpi

