
IISSSSUUEE 1144 ­­ JJUULL 22001133

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // ww ww ww .. tt hh ee mm aa gg pp ii .. cc oo mmRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

GGeett pprriinntteedd ccooppiieess
aatt tthheemmaaggppii..ccoomm

II //OO aanndd llooggiicc eexxppaannssiioonn
RRoobboottiicc aarrmm ccoonnttrrooll
PPaarraalllleell pprroocceessssiinngg

BBoooottccaammpp rreeppoorrtt
LLEEDD mmaattrriixx

CChhaarrmm
JJAAVVAA

TThhee ccaammeerraa
mmoodduullee

Win a 512MB
Raspberry Pi
& interfacing

goodies



Ash Stone - Chief Editor / Administration / Proof Reading

W.H. Bell - Issue Editor / Layout / Graphics / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Layout / Tester / Proof Reading

Chris 'tzj' Stagg - Tester

Colin Deady - Layout / Proof Reading

Matt Judge - Website / Administration

Aaron Shaw - Layout

Shelton Caruthers - Proof Reading

The MagPi Team

Meltwater - Proof Reading

Sai Yamanoor - Tester

James Nelson - Proof Reading

Adrian Harper - Layout

Paul Carpenter - Tester

Dave Allan - Tester

Claire Price - Proof Reading

Phil Tesseyman - Tester

Steve Drew - Layout

2

14

Welcome to the 1 4th issue of The MagPi - another ful ly loaded guide to al l things Raspberry Pi!

This month we begin our journey in introducing the newest module in the Raspberry Pi world, the

camera, with a great guide written by James Hughes on setup and basic operation. The conclusion of

this article wil l be found in next month's edition where James bui lds on these foundations with hints and

tips on advanced usage.

We reload the Matrix with part two of the interesting Pi Matrix article, take a look at the Guzunty board

and review the ever popular South West Raspberry Pi Boot Camps.

We bring you more on the programming languages Charm, Scratch and Python plus bring you the first

MagPi article on the popular language, Java.

I am pleased to report that al l pre-order Volume 1 MagPi bundles ordered via Kickstarter or

themagpi.com have now shipped. We wil l soon have individual issues coming to print. We hope you

enjoy the printed editions and thank you again for your support and patience in helping make the dream

a reality.

Ash Stone

Chief Editor of The MagPi



3

4 RASPBERRY PI CAMERA MODULE
Part 1 : Getting to grips with the camera module

8
Control l ing the Maplin robotic arm with Python

9
Make a low cost hardware expander

1 2
MUNTS I/O EXPANSION BOARD

Using an ARM Cortex-M0 microcontrol ler

21
Barnsley, Lima, Singapore, Liverpool

22
What are the ingredients for a fun fi l led family Pi day?

24
CHARM PART 3
Charm syntax and semantics

28 FRESHLY ROASTED
A beginners guide to Java

35
Win a 51 2MB Model B Raspberry Pi and interfacing goodies!

36 FEEDBACK
Have your say about The MagPi

PYTHON CONTROL: ROBOTIC ARM

COMPETITION

Boot Camp photographs on pages 3, 22 and 23 by Alex Sheppard
Prototype camera mount on the front cover is courtesy of Grasping Hand

1 4

PI MATRIX PART 2

BUILD A GUZUNTY PI

Control individual LEDs and give the Pi Matrix a workout
1 6

THIS MONTH'S EVENTS GUIDE

RASPBERRY PI BOOT CAMPS

32
Using a simple cl ient-server model for paral lel calculations - part 3
THE PYTHON PIT

http://www.themagpi.com

ContentsContentsContents

http://www.kickstarter.com/projects/677951563/sweetbox-ii-the-perfect-case-for-your-raspberry-pi
http://www.themagpi.com


4

DIFFICULTY : BEGINNER James Hughes

Guest Writer

BASIC OPERATION
Getting to grips with the camera module

The Raspberry Pi camera - part 1

A few weeks ago, the Raspberry Pi Foundation

launched their first peripheral, a 5MP camera.

Priced at $25, the same price as the model A, it’s

a very small PCB on which is an Omnivision

OV5647 camera module. I t connects to either the

Model A or Model B Raspberry Pi using a 1 5cm

1 5 way ribbon connector.

Over the course of this series I wi l l take you

through initial connection of the camera to your

Raspberry Pi and wil l show you some of the

basic commands used to take both sti l l and video

imagery. At the end, some of the more

sophisticated features wil l also be explained. Not

every option wil l be covered (new options are

being added all the time so it’s difficult to keep

up) but hopeful ly this article wil l give enough

information for you to be able to cover most

image taking tasks. Firstly though, a description

of how the camera module came to be...

History

From its first launch the Raspberry Pi has had a

connector on it to attach a camera to the GPU

(the VideoCore 4 Graphics Processing Unit on

the Raspberry Pi) . This connection uses the CSI-

2 electrical protocol and is a standard used in

most mobile phones. I t is an extremely fast

connection, which on the Raspberry Pi is

capable of sending 1 080p sized images

(1 920x1 080 x1 0bpp) at 30 frames per second,

or lower resolution at even higher frame rates. I t

had always been intended at some point to

release a camera module that could use this

connection, as the abi l i ty to stream high speed

video data through the GPU without any

interaction with the ARM processor would always

make the camera much more efficient than any

USB attached webcam. It would also enable the

use of the GPU’s abi l i ty to encode H264 video,

or JPEG images in hardware.

I t turns out that productising a tiny PCB like the

camera board is not a quick task! The prototype

was re-designed to remove some unnecessary

components, but more importantly, to move the

camera crystal, used for timing, to the PCB itself.



5

Electromagnetic compatibi l i ty (EMC) testing had

shown that the 25Mhz clock provided by the

GPU caused too much interference as it passed

up the ribbon cable to the PCB. Adding a crystal

to the PCB itself stopped this interference. A

couple more board designs later, to help with

production l ine manufacture and testing, and

eventual ly, about a year after the first prototypes,

the production board was ready.

Meanwhile, work had been ongoing to write a

couple of applications to make use of the

camera, to update the GPU firmware to support

the camera, and to improve the camera tuning as

the basic tuning already in place had a number of

obvious defects.

Camera tuning is a complex task, which has

been covered on the Raspberry Pi website, so I

won’t repeat it here. Suffice it to say, the end

results are well worth the extra effort put in by

David Plowman while at Broadcom. Thanks

David.

So, with the history out of the way, let’s take a

look at getting your camera going.

Setting up

Firstly, i t’s important to start with a warning.

Cameras l ike these are static sensitive. You

should earth yourself prior to handl ing the PCB (a

sink tap/faucet or simi lar should suffice if you

don’t have an earthing strap).

There are only two connections to make, the

ribbon cable needs to be attached to the camera

PCB and the Raspberry Pi itself. You need to get

it the right way round or the camera wil l not work.

On the camera PCB, the blue backing on the

cable should be away from the PCB, and on the

Raspberry Pi it should be towards the ethernet

connection (or where the ethernet connector

would be if you are using a model A).

Although the connectors on the PCB and the Pi

are different, they work in a similar way. On the

Raspberry Pi, you need to pul l up the tabs on

each end of the connector.

I t should sl ide up easi ly, and be able to pivot

around sl ightly. Ful ly insert the ribbon cable into

the slot, ensuring it is straight, then gently press

down the tabs to cl ip it into place. The camera

PCB itself also requires you to pul l the tabs away

from the board, gently insert the cable, then push

the tabs back.

The PCB connector is a l ittle more awkward than

the one on the Pi itself. There is a video at

http://youtu.be/GImeVqHQzsE which shows the

connections being made.

So, we now have the hardware al l attached, we

now need to make sure we have the correct

software instal led. As explained above, there are

some command line apps to instal l , and a

firmware upgrade with the camera driver and

tuning to instal l . This process may not be

necessary in future as newer distro’s are

http://youtu.be/GImeVqHQzsE


6

released which already contain the required fi les.

To update the firmware, l ibraries and

applications, execute the fol lowing instructions

on the command line.

sudo apt-get updatesudo apt-get upgrade

Now you need to enable camera support using

the raspi-config program you wil l have used

when you first set up your Raspberry Pi.

sudo raspi-config

Use the cursor keys to move to the camera

option and select enable. When you exit raspi-

config it wi l l ask to reboot. The enable option wil l

ensure that on reboot the correct GPU firmware

wil l be running (with the camera driver and

tuning), and the GPU memory split is sufficient to

al low the camera to acquire enough memory to

run correctly. Running a camera and associated

encoder does take up a big chunk of memory, as

the images are large, and there needs to be at

least two of them in memory at any time in order

to provide a double (in some cases triple) buffer

which prevents 'tearing' of images during display.

Checking it works

OK, we have connected the hardware, and

instal led the software. Now we need to see if it is

al l working correctly! The quickest way is just to

type in

raspistill -t 5000

This runs the sti l ls capture program for 5

seconds (or 5000 mil l iseconds. Note that al l

times used are in mil l iseconds). You should see

the whole display replaced with a moving image

of whatever the camera is looking at. I f you don’t

see the preview appear, or there are error

messages displayed, go straight to the

Troubleshooting section at the end of the article!

So, what can it do?

As with any camera, it can work in two ways. We

can capture sti l l images, just l ike a camera, or we

can capture video, l ike a camcorder. The two

demo applications provided handle these tasks

separately. Although it would be quite possible to

combine them into one application, that makes

the code more complicated, and as demo code a

lot of effort was put in to make it as easy to

understand as possible. As an aside, the C

language source code for the applications is

publicly avai lable from the Foundation's github

repository. Anyone is welcome to play around

with it and alter it for their particular purposes.

The code is well commented and uses the

Doxygen commenting scheme so you can

produce HTML documentation directly from the

source code.

So, on to the apps themselves. They are

command line applications, and do not need to

be run from a desktop environment since the

preview output from the apps is superimposed

over the top of any desktop or console being

used. Typing just the name of the application, or

adding --help or -? to the command line wil l

produce a list of al l the avai lable options. The l ist

is quite long, so you may want to pipe the output

into ‘less’ so you can scrol l up and down to read

it.

raspistill | lessraspivid | less



7

Basic options

Both applications use the -t option to specify the

length of time in mil l iseconds they should

continue running.

So “raspisti l l -t 3000” wil l run the camera for 3

seconds.

In the sti l ls case, and if a fi lename is specified,

the capture of the sti l l wi l l take place at the end of

the time period. In the video case, and again if a

fi lename is specified, the capture starts straight

away and wil l be as long as the time period.

To specify the fi lename of the output fi le, you use

the -o option. The fol lowing command runs the

camera for 2 seconds and at the end of the

period wil l take a sti l l image, saving it to the fi le

image.jpg.

raspistill -o image.jpg -t 2000

This command wil l do the same but wil l save a 2

second H264 video fi le cal led video.h264

raspivid -o video.h264 -t 2000

You don’t need to specify a fi lename for the

output - if you don’t then no capture is done, but

the preview wil l sti l l be run for the specified time.

I f you don’t specify a time, then 5 seconds is

used as a default.

The fol lowing wil l take a picture after 5 seconds.

raspistill -o image.jpg

So we have made some fi les, but how do we see

what they look l ike? Well , to view JPG images,

the FBI program is quite useful. You can instal l i t

quickly using:

sudo apt-get install fbi

Then you can easi ly display your JPG images,

zoom in and out (use - and +) etc.

fbi image.jpg

To view video, you can use the already instal led

omxplayer.

omxplayer video.h264

Preview options

You can specify whether you want the preview

disabled (-n), or whether it is to appear ful l

screen (-f) or in a window (-p). You can also

specify what opacity (-op) the preview window is

to have (so you can see the desktop underneath

if necessary).

To display the preview in a window at position

1 00,1 00, width 500, height 400 and at 50%

opacity (0-transparent to 255 -opaque), enter:

raspistill -p 100,100,500,400 -op 128 -o image.jpg

To disable preview completely, enter:

raspistill -n -o image.jpg

Join us in issue 1 5 of The MagPi where some of

the more advanced features wil l be discussed!

Troubleshooting

I f your camera is not working, there are a number

of things to check to ensure it is set up correctly.

1 ) Are the ribbon connectors al l firmly seated and

the right way round? 2) Is the camera module

connector firmly attached to the camera PCB?

3) Have you run sudo apt-get update, sudo apt-

get upgrade? 4) Have you run raspi-config and

enabled the camera?

So, if things are sti l l not working, try the fol lowing:

Error : raspistill/raspivid not found. This

probably means your update/upgrade fai led in

some way. Try it again.

Error : ENOMEM displayed. Camera is not

starting up. Check all connections again.

Error : ENOSPC displayed. Camera is

probably running out of GPU memory. Check

config.txt in the /boot/ folder. The gpu_mem

option should be at least 1 28.



8

DIFFICULTY : BEGINNER

Peter Lavelle

Guest Writer

PYTHON CONTROL
Control using a Python script

Controlling the Maplin/OWIrobot
robotic arm

Introduction

This article expands on the work by Jamie Scott,

et al in the Wikihow article at

http://www.wikihow.com/Use-a-USB-Robotic-

Arm-with-a-Raspberry-Pi-(Maplin) and al lows

you to control the movement of the arm using a

sequence of instructions read from a CSV

(Comma Separated Variables) formatted fi le by a

Python script.

This article assumes you are using the Raspbian

distribution but you should also be able to get

this working using the Occidental is distribution

from Adafruit. (More information about this

distribution can be found at

http://learn.adafruit.com/adafruit-raspberry-pi-

educational-l inux-distro/overview).

Configuring your Raspberry Pi

Before you can start using the script, there are a

few things you wil l have to do to get your

Raspberry Pi ready. The first thing you wil l need

to do is add the user account you are using on

the Raspberry Pi to the 'plugdev' group.

Assuming you are using the default 'pi ' user

account, the command to do this wil l be:

sudo usermod -aG plugdev pi

The next step is to add a udev rule to al low the

'pi ' user to send commands to the arm. To do

this, create a fi le cal led /etc/udev/rules.d/85-

robotarm.rules, using the command:

sudo nano /etc/udev/rules.d/85-robotarm.rules

with the contents below:

SUBSYSTEM=="usb", ATTRS{idVendor}=="1267",
ATTRS{idProduct}=="0000", ACTION=="add",
GROUP="plugdev", MODE="0666"

To save the fi le, press ctrl-x and then press ‘Y’

fol lowed by Enter.

You’ l l then need to instal l the Python USB

libraries. I found that the one from the Apt

repository was sl ightly out of date, so I had to

instal l the Apt version first and then upgrade it

using the pip command. The command below

wil l do this:

sudo apt-get install python-pip -y
sudo pip install pyusb --upgrade

When the Python USB libraries have been

instal led, reboot your Raspberry Pi so that the

changes to udev and the 'pi ' user account take

effect with the command:

http://www.wikihow.com/Use-a-USB-Robotic-Arm-with-a-Raspberry-Pi-%28Maplin%29
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview


9

sudo shutdown -r now

Connect the arm

When the Raspberry Pi has been rebooted,

connect the arm to a free USB port and turn it on.

A USB hub should not be needed here. To check

that the Pi has successful ly detected the arm,

execute the command:

dmesg | grep usb | grep 1267

I f the arm has been detected successful ly you

should see output simi lar to the l ine below:

[ 252.790554] usb 1-1.3: New USB device
found, idVendor=1267, idProduct=0000

I f you don’t see the result above, turn off

the arm using the power switch, unplug

from the USB port, plug the arm back in

and turn the power back on.

Getting the code

The scripts can be found on Github at

https://github.com/peterlavel le/maplinarm

You can clone the repository directly on to your

Pi if you have the Git cl ient instal led. Instal l ing

the Git cl ient on Raspbian is as simple as

running the command:

sudo apt-get install git-core

When you have the Git cl ient instal led, run the

command:

git clone
https://github.com/peterlavelle/maplinarm

to pul l down a copy of the Python code. This

command wil l clone the repository into a

subdirectory cal led ‘maplinarm’ and should pul l

down the fi les l isted below:

cd maplinarm/
ls
commander.py commands.csv maplinrobot.py

README.md

Making the scripts executable

Now we need to make the scripts executable by

the Raspberry Pi. To do this, change into the

directory you cloned the repository down to using

the cd command and run the command chmod

755 *.py This wil l give al l fi les ending in ‘.py’

executable permissions. You can double-check

this with the command ls -la *.py and looking for

the ‘x’ in the left-hand column of the output on

each l ine. See example l isting below:

Programming the arm

Ok, now on to the good part. The script

commander.py wil l read in commands from a

CSV fi le passed to it as an argument.

There is an example fi le cal led ‘commands.csv’

in the Git repository to help you get started. So

lets open this fi le up and take a look with the

command:

nano commands.csv

Contents are included below for reference:

shoulder-up,1.00,1.00
elbow-down,1.00,2.00
base-clockwise,4.00,1.00
shoulder-down,1.00,1.00
grip-close,1.00,1.00
base-anti-clockwise,4.00,2.00
grip-open,1.00,1.00
elbow-up,1.00,2.00

drwxrwxr-x 3 pete pete 4096 May 19 14:11 .
drwx------ 37 pete pete 4096 May 19 14:11 ..
-rwxrwxr-x 1 pete pete 1726 May 19 14:11 commander.py
-rwxrwxr-x 1 pete pete 2388 May 19 14:11 maplinrobot.py

git clone https://github.com/peterlavelle/maplinarm
Cloning into 'maplinarm'...
remote: Counting objects: 35, done.
remote: Compressing objects: 100% (23/23), done.
remote: Total 35 (delta 8), reused 12 (delta 2)
Unpacking objects: 100% (35/35), done.

https://github.com/peterlavelle/maplinarm


1 0

As you can see here, the basic format for each

command is:

command,duration,pause

command - any valid command found in the

maplinrobot.py script

duration - the time in seconds to execute the

command for. Make sure al l values are entered

to two decimal places. e.g, for 1 second specify a

value of 1 .00 here.

pause - the time in seconds to wait before

executing the next command in the sequence.

Make sure al l values are entered to two decimal

places. e.g, for 1 second specify a value of 1 .00

here.

The commander.py script wi l l execute each l ine

in the CSV fi le as a separate command for the

duration you set and wil l wait for the number of

seconds set in the pause value before moving on

to the next command in the sequence.

Valid commands and a description for each can

be found below:

base-anti-clockwise - Rotates the base anti-
clockwise

base-clockwise - Rotates the base clockwise
shoulder-up - Raises the shoulder
shoulder-down - Lowers the shoulder
elbow-up - Raises the elbow
elbow-down - Lowers the elbow
wrist-up - Raises the wrist
wrist-down - Lowers the wrist
grip-open -Opens the grip
grip-close - Closes the grip
light-on - Turns on the LED in the grip
light-off - Turns the LED in the grip off
stop - Stops all movement of the arm

Try this out yourself by editing the

commands.csv fi le in the repository and

replacing the contents with your own instructions

to the arm.

Running your program

Running your program is as simple as running

the command ./commander.py commands.csv

from the command line on your Raspberry Pi.

The script wi l l output each step of your program

as it runs it. You can find a example output of my

terminal below as an example run using the

commands.csv fi le in the repository:

./commander.py commands.csv
Running command 'shoulder-up' for a duration

of 1.000000 second(s) with a pause of 1.000000
second(s)
Sending command shoulder-up
The series of commands wil l then finish with:

Done.
All commands executed. Stopping the arm

That’s it. I f you have any ideas on how this could

be improved or expanded (maybe by adding

some sort of control logic to the commands fi le,

for example) then feel free to contact me via the

contact form on my blog at

http://solderintheveins.co.uk/contact-me/

Where to buy?

In the UK the robot arm is avai lable from Maplin

(http://www.maplin.co.uk - code A37JN) or

elsewhere from Robotikits

(http://www.owirobot.com - codes OWI-535 and

535-USB).

http://solderintheveins.co.uk/contact-me/

http://www.maplin.co.uk
http://www.owirobot.com


http://shop.pimoroni.com


1 2

DIFFICULTY : ADVANCED Philip Munts

Guest Writer

I /O, A/D & TIMING
Using an ARM Cortex-M0 microcontroller

Input/Output Processor

As an embedded system developer, I awaited
the release of the Raspberry Pi with great
interest and anticipation. I ordered one early on
and, like many others, waited for it to arrive.
There are many, many embedded system
possibilities for a $35 Linux computer.

Linux brings a great deal of capability to the party,
especially with regards to networking and USB
support. But one thing Linux systems, including the
Raspberry Pi, lack: microsecond I/O (input/output)
signal timing resolution. The multiuser, multitasking,
virtual memory foundation of Linux simply prevents it
from responding to or timing external events with
predictable microsecond resolution.

Some interesting projects that would require
microsecond timing resolution include:
• IR (Infrared) remote control protocols, such as the

LEGO® Power Functions RC protocol;
• DCC (Digital Command Control) for model

railroads;
• Ultrasonic ranging with a device like the Parallax

ultrasonic distance sensor.

The other capabilities of Linux are so compelling that
attempts have been made from time to time to graft in
real time support. None of these have been
particularly successful, at least in terms of “mind
share”. But fortunately there is another way: the I/O
processor (Figure 1).

Figure 1 - I/O Processor

I /O Processor

An I/O Processor is simply a separate computer
dedicated to I/O operations, usually acting as a slave
to the “main” or “real” processor. The I/O processor
runs its own software, separate from the main
processor. Depending on the implementation, the I/O
processor software may or may not be alterable from
the main processor.

The I/O processor idea is not new. The IBM 7094
mainframe computer of 1962 could use a 7044
computer for all I/O. Processing was performed on
the 7094 and I/O done on the 7044. Even the original
IBM PC, released in 1981, had an 8048 8-bit
microcontroller in the keyboard to handle key press
timing. Today, the I/O processor idea has been
pushed all the way down to single chip systems: The
NXP LPC4300, itself a single chip ARM Cortex-M4
microcontroller, includes a separate ARM Cortex-M0
microcontroller, for real time processing, on the same
chip.



1 3

The Raspberry Pi Model B offers several different I/O
interfaces, for example: ethernet, USB, and the P1
expansion header. A case can be made for attaching
an I/O processor to any of the three interfaces.
Ethernet and USB offer good bandwidth and
standard interfaces. An I/O processor board built to
attach to either Ethernet or USB would also be able to
connect to any other Linux, Windows, or Mac
computer. But both Ethernet and USB impose
significant cost and complexity penalties upon the I/O
processor board. It would be difficult (though not
impossible) to design an I/O processor board, with
USB or Ethernet, costing less than the Raspberry Pi
itself.

The P1 expansion header provides several different
I/O interconnect: I2C, SPI, UART, and basic GPIO.
Any or all of these may be used to communicate with
a microcontroller.

LPC1 1 1 4 I/O processor

I have designed and built an I/O processor board for
the Raspberry Pi using the NXP LPC1114, an ARM
Cortex-M0 single chip microcontroller. I selected this
device for several reasons:
• Low cost - I paid USD $1.26 each for the
LPC1114FN28 from Avnet Express. The LPC11xx
family is essentially NXP's 32-bit attack on the 8-bit
microcontroller market. They are priced less than
almost any PIC or AVR of similar capability. The
LPC1114 internal oscillator is also stable enough that
no crystal or external oscillator is required, saving
even more money.
• DIP package - I can do surface mount soldering,
given proper equipment, but I can't say I enjoy it. As
far as I know, the LPC1114FN28 and some
PIC32MX devices (more expensive) are the only 32-
bit microcontrollers available in a easily hand-
solderable DIP package.
• ISP (In System Programming) - without additional
hardware. NXP ARM Cortex microcontrollers have a
built-in serial port boot loader that allows them to be
reprogrammed without any additional hardware.
• Good support by free development tools. ARM
microcontrollers, including the LPC1114, are very
well supported by binutils/gcc/newlib/gdb compiler
toolchain.

Figure 2 - Assembled I/O Processor board

Some other Raspberry Pi expansion boards contain a
microcontroller (usually an AVR) as an addition or
afterthought. The LPC1114 microcontroller is central
to this board's design. Even though it only contains
one integrated circuit, an LED, and 8 resistors and
capacitors, this board offers:
• 8 GPIO (General Purpose Input/Output) signals
brought out to screw terminals.
• 5 terminals can be configured as A/D (Analog to
Digital) inputs for measuring analog signals.
• 3 terminals can be configured as timer inputs, for
counting or measuring incoming pulses.
• 5 terminals can be configured as timer outputs,
such as PWM (Pulse Width Modulation) outputs for
controlling motors.

Not all input/output functions are available at the
same time; for example, P1.0 can be configured for
any of digital input, digital output, analog input,
timer/counter input, but only one function at a time.

For more information about the LPC1114 I/O
Processor, including how to purchase one, visit:
http://tech.munts.com/MCU/Frameworks/RaspberryP
i/expansion/LPC1114/

Next time

In future articles I will describe in more detail how to
use the LPC1114 I/O processor to build some
interesting control projects with the Raspberry Pi.



1 4

DIFFICULTY : ADVANCED Derek Campbell

Guest Writer

Build a Guzunty
An Open Source, Open Hardware Addon

Make a low cost GPIO expander

Do you want to connect electronics to your
Raspberry Pi but are worried about overloading
or damaging the GPIO (General Purpose Input
Output) pins? Say "Hello! " to the GuzuntyPI-SB.

Guzunty is an Open Source, Open Hardware
addon you can easi ly bui ld yourself. This tiny
l i ttle board wil l protect your Raspberry Pi whi le
you learn, but it can do so much more.

The Guzunty is programmable using ‘cores’ .
These fi les can handle repetitive tasks that slow
down the Raspberry Pi 's CPU and they can
provide access to 25 more input/output pins than
on the GPIO alone. Take it to the next level and
learn to program a core to do new tasks yourself.

Protecting your Raspberry Pi

As standard, no Raspberry Pi signals are directly
brought out to the pins on the top side of the

Guzunty, so it is almost impossible to feed
damaging voltages into your Raspberry Pi.
Instead, al l signals pass though the chip at the
heart of this design, a Xil inx XC9572XL.

The XC9572XL is a Complex Programmable
Logic Device or CPLD for short. Don’t worry
about the word ‘Complex’ in the name, the
Guzunty makes it easy. The CPLD is tolerant of 5
volt signals which would damage your Raspberry
Pi, so you can interface with more kinds of
external devices, including Arduino.

NOTE: The CPLD wil l be damaged by voltages
greater than 5.5 volts. You should be especial ly
aware that mains voltages are dangerous and
need special isolation circuitry. However, if you
should make a mistake and fry the CPLD, a
replacement chip can be purchased
inexpensively and swapped into the socket.

Input / Output expansion

The CPLD is programmable, but unl ike a
computer program, a CPLD program defines
hardware logic. To provide I/O (Input / Output)
expansion, we program the CPLD to provide a
Serial Peripheral Interface (SPI) on four of its
general purpose I/O pins.
The System On Chip (SOC) of the Raspberry Pi
has SPI, on GPIOs 8, 9, 1 0 and 1 1 . We can thus
easi ly make the Raspberry Pi send data to the



1 5

CPLD in any programming language that can
open the SPI device. The CPLD then uses the
data we send it to turn its output pins on or off.
The SPI interface works in both directions, so we
can also read from the CPLD whether its input
pins are in a high or low state. The standard
Guzunty board has a total of 25 free I/O pins. We
need 4 Raspberry Pi GPIO pins talking to the
CPLD and, if we need them, there are another 1 3
unused pins on the Raspberry Pi. Guzunty takes
your Raspberry Pi from 1 7 GPIO signals to 40
I/O's (25 plus 1 3). Not bad!

Doing repetitive tasks

These tasks wil l be simple jobs where we need
to turn logic signals on and off quickly and
repetitively as with Pulse Width Modulation
(PWM) for example. With PWM, we can control
the brightness of a LED or the position of a servo
by control l ing the length of time a logic output is
held high. Another example is driving a LED or
LCD display. The display looks clear and stable
to the human eye, but in real ity, the different
display elements are being switched on and off
hundreds of times a second. These tasks can put
a considerable load on the CPU of the Raspberry
Pi, but a CPLD can easi ly handle them leaving
your Raspberry Pi to get on with the real work.

NOTE: Handling an independent task l ike this
does require one extra pin on both the CPLD and
on the Raspberry Pi to provide a clock signal so
that the CPLD can keep track of time.

Design your own core

To make it as easy as possible to get started, the
Guzunty website already contains a suite of
cores to do a variety of useful tasks when

plugged into your Raspberry Pi. However, you
don’t have to stop there. You can create your
own cores using a free tool chain downloadable
from the Xil inx website. You program cores using
either schematics or a Hardware Description
Language. How you do that is beyond the scope
of this article, but in the meantime check out the
cores already avai lable at:
https://github.com/Guzunty/Pi/wiki/Avai lable-
cores.

Can Guzunty power my projects?

Yes, the Guzunty provides ground, 3.3v and 5v
outputs. These are taken from the power pins on
the Raspberry Pi GPIO header. You must
adhere to the Raspberry Pi 's overal l power drain
l imits.
For more detai ls, see:
https://github.com/guzunty/pi/wiki/Frequently-
asked-questions.

That's all Folks!

I do hope you decide to bui ld your next project
with a Guzunty. I ’m sure you wil l be glad you did.
Please visit https://github.com/Guzunty/Pi/wiki to
find example cores and the code to drive them.

https://github.com/Guzunty/Pi/wiki/Available-cores
https://github.com/guzunty/pi/wiki/Frequently-asked-questions
https://github.com/Guzunty/Pi/wiki


1 6

DIFFICULTY : MODERATE

Bruce E. Hall
W8BH

Guest Writer

PI MATRIX
Control an 8x8 matrix of 64 LEDs

Part 2: Control individual LEDs
& give the Pi Matrix a workout

Introduction

In Part 1 of this series we looked at how to bui ld the

Pi Matrix kit and how to configure I2C on the

Raspberry Pi to communicate with it. The result was

a simple Python script to turn al l the LEDs on and off.

In this month's tutorial we wil l fol low on from Part 1

and do something more interesting. First we wil l look

at how the Pi Matrix works, then we wil l write code for

something more YouTube friendly!

How does it work?

The heart of the Pi Matrix is the MCP2301 7 chip from

Microchip. This is a wonderful device for creating

hardware interfaces because:

I f you do something ‘bad’ with your connection to the

outside world and fry the 2301 7, you’ve lost less than

US$1 .50 and sti l l have a working Raspberry Pi.

I t just so happens that the LED matrix requires 1 6

data l ines - a perfect match. But how can you control

64 LEDs with only 1 6 l ines? Don’t you need 64 lines?

That’s where the ‘matrix’ comes in. Take a look at a

typical wiring diagram for these devices:

The LEDs are wired in an 8x8 matrix with 8 rows

(labeled ‘Dig’) and 8 columns (labeled ‘Seg’) . These

8 rows and 8 columns make up our 1 6 connections to

the outside world. To turn on an LED, apply power

and ground to the corresponding column and row

connections. For example, to turn on the highl ighted

LED at position (0,0) apply power to the anode on

left-most column ‘SegDP’ and ground to the cathode

on the top-most row ‘Dig0’ . Notice that each LED

shares a row connection with 7 other LEDs and a

column connection with 7 other LEDs.

• I t 'speaks' I2C and only needs two

      communication l ines from the Raspberry Pi

• I t buffers and protects your Pi from the outside

      world

• I t gives you 1 6 I/O data l ines to work with

• I t is dirt cheap! Less than US$1 .50 at unit

      quantities



1 7

Let’s see how our program from part 1 works. To l ight

up al l of the LEDs we send the hexadecimal value

0xFF to Port A of the 2301 7, which goes to the

column pins of the matrix. Hexadecimal 0xFF is the

same as binary 1 1 1 1 1 1 1 1 . Each bit and therefore

each column input wil l be at logic 1 (+3.3V). We also

must send the value of 0x00 to Port B, which goes to

the row pins. Hexadecimal 0x00 is the same as

binary value 00000000. Each bit and therefore each

row input wil l be at logic 0 (ground). Because all the

columns (anodes) are high and all the rows

(cathodes) are low, al l the LEDs turn on.

Coding for columns

We can make more interesting displays by changing

the row and column inputs. For instance, instead of

making al l of the column inputs high, if we only make

one column high then only the LEDs in that column

wil l turn on. The others wil l stay off.

To try this we wil l use the Python interactive mode.

From the command line, enter:

python
The Python prompt is a tripple chevron '>>>'. From

here we enter our Python code and the interpreter

works as we go. Enter the 1 1 commands from the two

code blocks on page 1 2 issue 1 3:

>>> import smbus
...
>>> bus = smbus.SMBus(1) #0 for Rev.1 Pi
...
>>> bus.write_byte_data(addr,portA,0xFF)

All LEDs should now be on. Now let’s turn on a single

column. To turn on the first column we just need to

turn on the lowest bit. This is easy, just write the value

of 00000001 (0x01 ) to Port A. Enter:

>>> bus.write_byte_data(addr,portA,0x01)
I f we want to turn on the third column we write the

binary value 000001 00 (0x04) to Port A:

>>> bus.write_byte_data(addr,portA,0x04)

I f we start numbering our columns at zero we can

determine the value mathematical ly as 2^n, where n

is the column number. So column 0 is 1 , column 2 is

2, column 2 is 4, column 3 is 8 and so on. To code

this value we use a neat trick, the left-shift operator

‘<<’ . Enter the fol lowing and replace 'col ' with any

number between 0 and 7:

>>> bus.write_byte_data(addr,portA,
     0x01<<col)
Did what you expect happen? Depending on your

orientation the result might have been the opposite of

what you expected. This is because the column pins

for the LED matrix are wired in the opposite direction

to the Port A pins (see the table on page 1 3 in issue

1 3). To correct for this we’ l l use the right-shift

operator instead of the left-shift operator:

>>> bus.write_byte_data(addr,portA,
     0x80>>col)
When you are ready to move on, turn on al l the

column LEDs with the fol lowing command:

>>> bus.write_byte_data(addr,portA,0xFF)
Coding for rows

Now let’s do the same thing for rows. We can use the

same technique but electrical ly we need to selectively

bring the row to logic 0, not logic 1 . For example, to

turn on row 3 we’ l l need to send the binary value

1 1 1 1 1 01 1 to Port B. The third bit from the right is

logic 0 and everything else is logic 1 . Notice that al l of

the bits are fl ipped, or inverted, compared to what we

used in the column method. We can write the binary

value 1 1 1 1 1 01 1 as the inverse of 000001 00.

In Python the inverse (or bit wise NOT) operator is

the ti lde '~'. Enter the fol lowing and replace 'row' with

any number between 0 and 7:

>>> bus.write_byte_data(addr,portB,
     ~(0x01<<row))
Coding for individual LEDs

I t’s easier than you think. Al l we have to do is



1 8

combine the code for selecting the row and selecting

the column!

>>> bus.write_byte_data(addr,portA,
     0x80>>col)
>>> bus.write_byte_data(addr,portB,

     ~(0x01<<row))
Final ly, to turn off al l LEDs enter:

>>> bus.write_byte_data(addr,portA, 0x00)
Demo code

We now have enough material to create a demo

program. Each type of demo has been grouped into

its own routine. Try typing this code using your

favorite editor and save it as matrix-part2.py.

Alternatively you can copy it from

http://w8bh.net/pi/matrix-part2.py. You can run it from

the command line with the fol lowing:

chmod +x matrix-part2.py
./matrix-part2.py

In Part 3 of this series we wil l create some intricate

matrix displays. Have fun!

#!/usr/bin/python

# matrix­part2.py

# Selectively turn on and off each row, column, and pixel

import smbus #gives us a connection to the I2C bus

import time #for timing delays

#Definitions for the MCP23017 chip

ADDR = 0x20 #The I2C address of our chip

DIRA = 0x00 #PortA I/O direction, by pin. 0=output, 1=input

DIRB = 0x01 #PortB I/O direction, by pin. 0=output, 1=input

PORTA = 0x12 #Register address for PortA

PORTB = 0x13 #Register address for PortB

OUTPUT = 0

INPUT = 1

# Lower Level LED Display routines

def Init23017 ():

#Set up the 23017 for 16 output pins

bus.write_byte_data(ADDR,DIRA,0x00); #all zeros = all outputs on PortA

bus.write_byte_data(ADDR,DIRB,0x00); #all zeros = all outputs on PortB

def TurnOffLEDS ():

bus.write_byte_data(ADDR,PORTA,0x00) #set all columns low

bus.write_byte_data(ADDR,PORTB,0x00) #set all rows low

def TurnOnLEDS ():

bus.write_byte_data(ADDR,PORTA,0xFF) #set all columns low

bus.write_byte_data(ADDR,PORTB,0x00) #set all rows low

def SetLED (row,col):

#Turn on an individual LED at (row,col). All other LEDS off.

bus.write_byte_data(ADDR,PORTA,0x80>>col)

bus.write_byte_data(ADDR,PORTB,~(1<<row))

def SetColumn (col):

#Turn on all LEDs in the specified column. Expects input of 0­7

bus.write_byte_data(ADDR,PORTB,0x00)

bus.write_byte_data(ADDR,PORTA,0x80>>col)

def SetRow (row):

#Turn on all LEDs in the specified row. Expects input of 0­7

bus.write_byte_data(ADDR,PORTA,0xFF)

bus.write_byte_data(ADDR,PORTB,~(1<<row))

def Pause():

#Turn off LEDS and wait a while between cases

TurnOffLEDS();

time.sleep(0.5);

http://w8bh.net/pi/matrix-part2.py


1 9

def FlashLEDS (delay):

#Flash all of the LEDS on/off for the specified time

TurnOnLEDS()

time.sleep(delay)

TurnOffLEDS()

time.sleep(delay)

def LEDtest (delay):

#Turn on all 64 LEDS for the specified time delay, in seconds

print "\nLighting all LEDS for %d seconds" % delay

TurnOnLEDS() #turn them all on

time.sleep(delay) #wait a while

Pause() #then turn them off

def FlashTest (numCycles,delay):

print "\nFlash all of the LEDS"

for count in range(0,numCycles):

FlashLEDS(delay)

Pause()

def ColumnTest (numCycles):

#Turn on each Column.

#Keep PortB (rows) low & set each bit in PortA (columns) high

#This will actually light LEDS in reverse order, col 7 to col0,

#because PortA bit 0 is wired to Col7, A1 to Col6,..., A7 to Col0

print "\nTurn on Columns 0 to 7"

for count in range(0,numCycles):

print "...cycle",count+1

for col in range(0,8):

SetColumn(col)

time.sleep(0.5)

time.sleep(1)

Pause()

def RowTest (numCycles):

#Turn on each row, from row 0 to row 7

#Keep PortA (columns) high & selectively turn a bit in PortB (rows) low

print "\nTurn on Rows 0 to 7"

for count in range(0,numCycles):

print "...cycle",count+1

for row in range(0,8):

SetRow(row)

time.sleep(0.5)

time.sleep(1)

Pause()

def PixelTest (numCycles):

#Flash each LED according to its (row,col) coordinate

print "\nFlash each LED in (row,col) order"

for count in range(0,numCycles):

for row in range(0,8):

for col in range(0,8):

SetLED(row,col)

time.sleep(0.1)

Pause()

# Here is the program body: call each of the text routines in turn.

print "\nPi Matrix test program starting"

bus = smbus.SMBus(1); #Use '1' for newer Pi boards; 0 for oldies

Init23017() #Set all 16 I/O pins as output

LEDtest(5) #Turn on all LEDS to verify connectivity

FlashTest(25,0.1) #Flash them all for a little fun

ColumnTest(3) #Sequentially turn on Columns 0 to 7

RowTest(3) #Sequentially turn on Rows 0 to 7

PixelTest(1) #Flash each pixel in row,col order

FlashLEDS(0.1) #Visual end of test

print "\nDone."



http://swag.raspberrypi.org


Liverpool Raspberry Jam
When: Saturday 6th July 201 3 @ 9.30am

Where: North Liverpool Academy, 1 20 Heyworth St, Liverpool, L5 0SQ

The event wil l run from 9.30am unti l 4.00pm. Further information and free tickets are avai lable at
http://raspberryjam.org.uk/event/l iverpool-raspberry-jam-rjam-rjamlpl-saturday-6th-july-201 3/

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Barnsley Hack-a-thon
When: Saturday 6th July 201 3 @ 9.00am
Where: Digital Media Center, Bansley

This event wil l run from 9.00am unti l 9.00pm. The event is free. Further information is avai lable at
http://makedo.in/hackday

Lima Raspberry Pi Meet-up
When: Saturday 1 3th July 201 3 @ 1 1 .00am

Where: Lima Public Library, 650 W Market St, Lima, OH

Attendees wil l receive an LRITA.org flash drive and a pizza lunch.
Register at http://www.lrita.org/events/bit-talk/july-1 3,-201 3-raspberry-pi-meet-up.aspx

Singapore Raspberry Pi Training
When: Saturday 1 3th July @ 2.00pm

Where: Singapore Science Centre, Digital Design Studio, Singapore 609081

Runs from 2.00-4.30pm. Free for Science Centre members, S$1 0 for others. Further information:
http://www.itsc.org.sg/index.php?option=com_eventbooking&task=view_event&event_id=74&Itemid=41

21

http://raspberryjam.org.uk/event/liverpool-raspberry-jam-rjam-rjamlpl-saturday-6th-july-2013/
http://www.itsc.org.sg/index.php?option=com_eventbooking&task=view_event&event_id=74&Itemid=41
http://makedo.in/hackday/
http://www.lrita.org/events/bit-talk/july-13,-2013-raspberry-pi-meet-up.aspx


22

Dr Mike Bartley
& Caroline Higgins

Guest Writers

RASPBERRY PI
Boot Camps

What are the ingredients for a fun
filled family Pi day?

Raspberry Pi Boot Camp events are now being held

on a regular basis in the south west of the UK. The

MagPi asked Mike Bartley, one of the organisers of

the Bristol event, to tell us all about the events and

how they came about, hopefully to inspire similar

events elsewhere.

In December 201 2 the Bristol branch of BCS The

Chartered Institute for IT held its annual talk to

encourage chi ldren into computing. The venue was

At-Bristol and the theme was the Raspberry Pi. With

an inspirational talk from Rob Bishop of the

Raspberry Pi Foundation, the event attracted over

450 attendees with at least 300 being chi ldren. Since

the UK government proposed the planned updates to

the IT curriculum last year there has been a growing

interest in the subject from chi ldren, parents and

teachers. I t was clear we had hit a topic of high

interest and we needed to understand how best to

take it forward.

Both the University of Bristol and At-Bristol have

outreach programs to encourage chi ldren into

computing and engineering. A col laboration between

the three organisations seemed like a perfect way to

col lectively achieve our goals; to create a series of

events which support the learning of the next

generation of innovators and engineers, whi lst

providing a fun day out for the family.

At-Bristol provides the faci l i ties and logistics; the

University of Bristol ’s students run a drop in cl inic and

workshops as well as loaning equipment. The BCS

put a cal l out to their members to find volunteers who

run workshops and demonstrations. Al l three made

financial contributions of some sort. The voluntary

"let's do this" attitude pervaded the organisation and

the event and enabled the three organisations to work

together to pul l off the first two events, which proved

to be hugely successful .



23

Over 400 chi ldren and 200 adults attended the first

two Raspberry Pi Boot Camps to learn what they can

do with the Pi. From control l ing remote control cars

and LEDs to setting up a home media server – the

chi ldren got to grips with how they can use the

Raspberry Pi to make things!

Marcus aged 1 2 commented "This was fantastic. My

Pi has been at home in its box for a while but I ’ve now

learned loads of cool things to do with it. Me and my

mates are looking forward to the next one already! "

The events wil l now become a regular feature at At-

Bristol on a Saturday in September, November,

January, March and May.

The workshops ranged from beginner to advance

level, and also included a show-and-tel l section that

gave visitors the opportunity to learn more about

expert level projects. Pi-Cars proved to be very

popular workshop; chi ldren had the opportunity to

bui ld remote control handset for a car using their

Raspberry Pi. Other workshops included the Pi as a

home media server, led traffic l ights and how to log

data to the internet. The Magpi team were on hand to

answer questions. The show-and-tel l section included

a number of robots control led by a Raspberry Pi and

a drawing robot.

Obviously organising a large scale event of this

nature throws up many challenges, finding enough

equipment has been the main issue. We asked

people to bring their own monitors, keyboards and

power cables, which of course isn’t always possible.

We encouraged visitors bring their laptops and there

were volunteers on hand to show them how to set up

their laptop to control their Pi.

Future Boot Camps wil l continue the theme of

workshops and demonstrations on the Pi and other

platforms like Arduino. However, other aspects of

computing wil l also be covered. For example, the

second Boot Camp on June 1 5th featured a 'Rai ls

Girls' workshop, hosted by local web agency

Simpleweb. Female programmers were invited to

spend the day learning Ruby on Rails. In addition to

this we ran three 90 minute workshops which aimed

to introduce chi ldren to application writing using the

language Processing. The basics of variables,

conditionals, loops and functions with the aim of

developing a game by the end of the workshop. This

wil l help the chi ldren prepare for a free one week

programming course to be held at the University of

Bristol as part of a national competition organised by

the Young Rewired State.

Going forward the three organisations wil l continue to

work together as al l objectives remain completely

al igned. I t is clear that col laboration l ike this has been

extremely beneficial in enabling us to achieve our

goals. Events wil l be held over five Saturdays each

year and there wil l be themes (such as Wireless,

Robotics, and smart homes) to keep the events fresh.

The first two events rel ied heavi ly on the goodwil l of

volunteers. Now that we have organised two

successful boot camps we need to ensure the event

is sustainable by asking for donations and

sponsorship. We would l ike to buy dedicated

equipment and cover the costs incurred by

volunteers. I f you would l ike to contribute to future

events by providing a workshop, being part of the

show-and-tel l section or by making a donation,

please contact carol ine.higgins@bristol .ac.uk

Dr. Mike Bartley is Chair of BCS The Chartered Institute for

IT in Bristol and of the High Tech Sector Group of the West

of England Local Enterprise Partnerships.

Carol ine Higgins is Outreach & Student Liaison Manager,

Faculty of Engineering, University of Bristol .

http://sourceforge.net/projects/arcem/files/latest/download?source=files
mailto:caroline.higgins@bristol.ac.uk


24

DIFFICULTY : ADVANCED Peter Nowosad

Guest Writer

Programming in Charm part 3

Having covered RISCOS on the Raspberry Pi
and Charm data types in the first two articles, it's
my pleasure to welcome you to the third article in
the series on the Charm programming language.
If you've been following the series, you may well
have already installed Charm under RISCOS
and tried out the printed exercises. If not it's not
too late to go back and do so!

In this article I am going to cover some of the
syntax and semantics of Charm illustrated by
simple examples which I hope will whet your
appetite and arm you (no pun intended!) with
enough knowledge to start writing your own
Charm programs.

Charm is an object oriented structured
programming language. The structured program
theorem, which provides the theoretical basis of
structured programming, states that three ways
of combining programs namely sequencing,
selection, and iteration are sufficient to express
any computable function.

Sequence

In the absence of flow of control
statements related to selection
and iteration, Charm programs

execute a line at a time from top to bottom e.g.

int x : = 1;

int y : = 2;

int z : = x + y;

do_this ();

do_that ();

however even in this simple example do_this
and do_that cause call outs to named
procedures that contain their own code (not
shown here). Although white space is ignored,
usually each line contains a single statement
which ends with a semicolon, with one common
statement type being the assignment statement
in which the left hand side is assigned the value
of the expression on the right hand side with the
two being separated by the assignment
operation : =.

Selection



25

Often programs want to take different courses of
action under different conditions and this is
handled by selection, which in Charm is provided
by the if and case keywords.

if checks whether the following conditional
expression evaluates to true in which case the
next statement, or block of statements enclosed
in curly brackets is executed, or false in which
case it is not.

The if keyword has an optional associated
else keyword that if present introduces the
statement or statements that should be executed
if the boolean expression is not true e.g.

if x = 1

y : = 0;

else

y : = 1;

Note the use of indentation to help
highlight the flow of control logic.

The case keyword introduces a series of
clauses that match the value of an integer
variable against a number of possible constant
values and chooses a block of code to execute
e.g.

case x

{

1: handle_1 ();

2: handle_2 ();

otherwise:

handle_other (x);

}

Note the use of the otherwise clause to catch
any values that do not match.

Iteration

Sometimes the same code
needs to be executed
many times within a loop,
often to process each
member of an array. This
is handled by iteration
using the while, repeat

and for keywords.

while checks whether the following conditional
expression evaluates to true in which case the
next statement, or block of statements enclosed
in curly brackets are executed until the
expression evaluates to false e.g.

while true loop ();

repeat is similar to while but the conditional
expression is at the end of the loop and must
evaluate to false for the loop to be repeated
e.g.

repeat loop (); false;

for allows a control variable to be initialised,
incremented and tested all in one statement e.g.

initialises the contents of an integer array of size
10 to 0.

Boolean expressions

Boolean expression appear as part of many flow
of control statements in Charm and can be
composed of the following comparison operators:

= - equal
# - not equal
:=: - equal (pointer comparison)
:#: - not equal (pointer comparison)
> - greater than
< - less than
>= - greater than or equal to
<= - less than or equal to

If A and B are boolean expressions, they can be
combined using the logical operators:

A and B - both A and B must be true
A or B - either A or B must be true
not A - A must be false

for (int i : = 0 step i : = i + 1 while i < 10) a[i] : = 0;



26

nil

The nil keyword occupies a special place in the
Charm language and can be used to initialise
and test pointers (ref variables). It indicates that
the pointer is not currently setup to point
anywhere, and an attempt to use it will result in
an exception that stops program execution.

Tree recursion

The following program uses tree recursion and
the language constructs to draw a tree on the
screen

import lib. Maths;

import lib. Vdu;

module Tree

{

const

MODE = 31, | display mode |

OFFSET = 30, | display offset |

LEVELS = 7, | branch levels |

VARS = 1000; | variations |

int xmax, ymax, xshift, yshift; | screen parameters |

proc variation (real value, real deviation) real

{

return value * (1 + deviation * (0. 5 - 1. 0 * (Maths. random () mod (VARS + 1)) / VARS));

}

proc branch (int level, real length, real angle, int xs, int ys)

{

int xe : = xs + length * Maths. fn. cos(angle);

int ye : = ys + length * Maths. fn. sin(angle);

Vdu. plot (Vdu. P_POINT + Vdu. P_PLOT_F_ABS, xs l_sl xshift, ys l_sl yshift);

Vdu. plot (Vdu. P_PLOT_F_ABS, xe l_sl xshift, ye l_sl yshift);

if level > 1 + Maths. random () mod 2

{

real scale : = variation (0. 65, 0. 25);

int branches : = level - Maths. random () mod 3;

if branches <= 0 return;

real range : = variation (1. 5, 0. 2);

for int i : = 0 step inc (i) while i <= branches

{

real factor : = variation (0. 5, 0. 8);

if i = branches factor : = 0;

branch (level - 1,

variation (length * scale, 0. 2),

variation (angle, 0. 3) + i * range / branches - range / 2,

xe - (xe - xs) * factor, ye - (ye - ys) * factor);

}

}

}



44

To make the tree look more realistic some
branch parameters have been randomised, for
example their length and the angle between
them.

For this month's exercise add some fruit (hint

randomly draw some coloured circles at or near
branch ends).

Next Time

Next time I intend to talk about writing containers
in Charm, namely sets, lists and maps.

export proc ~start ()

{

Vdu. mode (MODE);

xshift : = Vdu. mode_var (MODE, Vdu. MV_X_EIG_FACTOR);

yshift : = Vdu. mode_var (MODE, Vdu. MV_Y_EIG_FACTOR);

xmax : = Vdu. mode_var (MODE, Vdu. MV_X_WINDOW_LIMIT) + 1;

ymax : = Vdu. mode_var (MODE, Vdu. MV_Y_WINDOW_LIMIT) + 1;

Vdu. g_colour (0, 7);

Vdu. plot (Vdu. P_POINT + Vdu. P_PLOT_F_ABS, OFFSET l_sl xshift, OFFSET l_sl yshift);

Vdu. plot (Vdu. P_RECTANGLE_FILL + Vdu. P_PLOT_F_ABS,

(xmax - OFFSET - 1) l_sl xshift,

(ymax - OFFSET - 1) l_sl yshift);

Vdu. g_colour (0, 0);

branch (LEVELS, (ymax - OFFSET) / 3, Maths. fn. asn(1), (xmax - OFFSET) / 2, OFFSET);

}

}



28

DIFFICULTY : MEDIUM Vladimir Alarcón
& Nathaniel Monson

Guest Writers

FRESHLY ROASTED
A beginners guide to Java

A Pi and a cup of Java, please!

You will need:
- A Raspberry Pi with Raspbian.

- 1 50 MB of free space in your SD card.

- Basic knowledge of programming.

- Basic command-line usage.

Introduction

In this article I'll show you how to write and run Java
programs on your Raspberry Pi.

Java is an object-oriented language designed to run
on many operating systems without requiring
recompilation of the source code. Java also includes
a vast amount of libraries, which offer solutions to
more advanced problems like running complex web
sites or high-end mission-critical algorithms. In this
article I will focus on the very basics of the language.
Once you master the language there are plenty of
web sites on the Internet with lots of details of
libraries and many examples.

I'll first show you the steps to install the Java compiler
and virtual machine on the Raspberry Pi. Then, we'll
create a couple of basic Java programs... and we'll
run them!

This article shows you the running examples first, and
delves into concepts later. The idea behind this
approach is that it will be easier for you to look at real

Java programs and try to identify the new elements
and their functions by yourself. Once you have written
the program and run it, I will explain the novelties.

1 . Installation

To write, compile and run your program, you'll need
two things: a text editor, and a Java development kit
(JDK). You can use any text editor to write a Java
program. I prefer Geany because of its syntax
colouring, but Leafpad or GEdit will work too.
While there are several JDKs, I suggest OpenJDK 7.
A JDK includes (mainly) a compiler and a Java virtual
machine (JVM). The compiler generates platform
independent bytecode and the JVM is able to run this
bytecode.

To install Geany and OpenJDK 7 open a terminal
window and type:

sudo apt-get install -y openjdk-7-jdk geany

It will probably take at least nine minutes to download
and install everything, but it can take longer
depending on the speed of your internet connection.
Once the installation has finished, check both
packages are installed correctly. You should be able
to open Geany from the main menu, under
"Programming". To test OpenJDK7, open a terminal
window and type:



29

java -version

It should display a few lines starting with:

java version "1. 7. . .

OpenJDK . . .

2. Running our first program

Create a directory to store our programs. For
example, open a terminal and type:

mkdir cupofjava

Now it is time to write our first program (a class)
called "HiThere". Java is an object oriented
programming langauge, where every program
contains at least one class which in turn can use
other classes.

Open the text editor (Geany in my case) and create a
file called HiThere. java. Type in,

public class HiThere {

public static void main(String[] args) {

System. out. println("A Java Pi! ");

}

}

and save the file. Using the terminal, change to the
directory "cupofjava" (where you created the
program) using:

cd cupofjava

and then type:

javac HiThere. java

The javac command compiles the . java file into a
. class file. The compiler analyses the source code
in the HiThere. java file and generates the
bitecode form. After 15 seconds or so, this command
should silently finish. If you misspelled something it
will show an error message that will display where the
problem is. If this is the case, go back to the text
editor, check your code and fix the misspelling, save
the file, and then run javac again. Once the file has
been successfully compiled, you'll find a new file in

the same directory called HiThere. class . This is
the compiled program that will be run.

To run the program type:

java HiThere

You don't need to specify the . class extension.
The command javac compiles programs, and the
command java executes them.

The program will run and will display:

A Java Pi!

Well... Congratulations! You have written and run
your first Java program on the Raspberry Pi.

You probably noticed the program took a few
seconds to write that message. Why so slow?
Actually, Java is quite fast. The whole program took
only a couple of milliseconds to run, but Java needs a
few seconds at the beginning to load the JVM. The
good news is that once the JVM is loaded, the
program runs very fast.

Well, let's now look at the program in more detail.
There's only one line in it that is actually executed.
This line is:

System. out. println("A Java Pi! ");

The other lines specify the name of the class
"HiThere" (at line 1), and the name of the method
main (at line 3). This class, similar to any other Java
class, can have many methods but we are using only
a single one in this example.

Challenge #1: Your turn now. Using the text editor,
change the message in between double quotes in the
source file from "A Java Pi!" to "My name is Name."
(use your name) and save it. With the terminal,
compile the program again and run it using the two
commands (javac and java) shown before. If you do it
right, the program will display your name now. Do it!

A note: The syntax of Java (the words and
punctuation of the language) is very similar to the
syntax of the C language. Any programmer with



30

knowledge of C will find the basics of Java very easy
to understand.

3. Java variables and Control flow

The next example illustrates the use of variables and
control flow statements. In the same directory where
we stored the first program, create a new file called
DiceRoller. java. Then append,

import java. util. Random;

public class DiceRoller {

public static void main(String[] args) {

Random generator = new Random();

int d = 0;

while (d < 4) {

System. out. print("Rolling. . . ");

int face = 1 + generator. nextInt(6);

System. out. print("I got a "+ face

+ ". ");

if (face == 1) {

System. out. print("Wow! An ACE! ");

}

System. out. println();

d = d + 1;

}

}

}

to the file and save it. Compile and then run the
program.

javac DiceRoller. java

java DiceRoller

You'll see something similar to:

Rolling. . . I got a 2.

Rolling. . . I got a 1. Wow! An ACE!

Rolling. . . I got a 4.

Rolling. . . I got a 5.

The program will roll four dice and will identify which
ones are aces (the number 1). Do you see how it
works?

There are quite a few things of interest in this
example. This program uses two integer variables,
named d and face. The variable d is used to make
sure we roll four times, not three times or not five

times. The face variable stores the die face after
each run. The program also receives an array of
strings in the variable named args . The args

variable contains the command-line parameters
present when the program is run. Finally, the
program also uses an object called generator.
Remember I told you a Java class can use other
classes? This is an example. This program uses an
existing class (called Random) that specializes in
generating random numbers. A class can be used by
calling its methods, either directly or by creating an
object. In this case we only use one of its methods,
the one called nextInt() , to get a random number.

Additionally, Java uses the brackets { and } to define
groups of instructions, called blocks. Each block can
be empty, or have one or more instructions. You can
define sub-blocks inside existing blocks as needed.
This is commonly used in control-flow statements.

Talking about this,... this example shows the use of
two control-flow statements: if and while. An if

statement executes a block only if the condition
specified in parenthesis is true; a while, on the other
hand, will execute the nested block multiple times as
long as the condition is true. Other control blocks are
for, do-while, switch and if-else.

In the example, the if statement checks the value of
face. That's why the extra message appears only
when an ace is rolled. The while statement, on the
other hand, executes the included block four times.
The while loop continues while the value of the
variable d is less than 4. Notice that the variable is
set to zero before the loop. Inside the loop it
increases by one at the end of the block. Therefore,
the first four times (0, 1, 2, 3) the while succeeds,
but on the fifth one (when it has the value 4) it fails.

Challenge #2: Change the program to roll 7 dice,
where each dice has 10 faces. Once you have saved
your changes, go to the compile the program again
and run it using the two commands (javac and
java) shown before. If you do it right, the program
will now display all seven dice. Go for it!



http://milocreek.com


32

DIFFICULTY : ADVANCED W. H. Bell

MagPi Writer

CLIENT SERVER
Model for using many computers

Parallel calculations - part 3

Completing BatchCalculator

Welcome back to the Python Pit. This article is a continuation of the tutorial presented in Issues 10 and 13. If you have not
already done so, it would be a good idea to read the previous parallel calculations articles in these Issues before proceeding.

The FunctionCalculator. py file was originally written to run a genetic algorithm, using several computers at once. The
calculations for each point in the genetic algorithm were evaluated using C++ and ran for around eight minutes on high
specification CPU cores. In this case, the time overhead of server and client processes written in Python was negligable.
Since the cluster used was often used for other tasks, the implementation of FunctionCalculator. py provided a way of
using as many cores as possible without requiring a rigid addressing structure.

There remain two steps left in this series of articles: (i) the completion of the BatchCalculator class and (ii) the use of
FunctionCalculator. py to run some more serious calculations. Open the file FunctionCalculator. py from Issue
13. Then go down to function shutdown in the class BashCalculator. After shutdown, add the member function
evaluate:

def evaluate(self, cmds):

# Wait until at least one client thread is available
while len(self. client_threads) == 0:

print "Waiting for a client to connect"
time. sleep(5)

ncmds = len(cmds)

# Create a buffer to collect the results
results = [0. ] *ncmds

# If no commands were given return empty list of results
if ncmds == 0:

return results

# Create a buffer to collect the status of the results and the results
# 0 => not calculated, 1 => being calculated, 2 => done
status_results = []
icmd = 0
while icmd < ncmds:

status_results. append(StatusResult(0, 0. ))
icmd = icmd + 1



33

# Loop until all of the calculations have finished.
finished = False
ithread = 0
icmd = 0
while not finished:

print "Looping"
print "Status and results = %s" % status_results
time. sleep(1)

# Check if all status flags are 2 and copy the results into the
# results list at the same time
jobsLeft = False
for i in xrange(ncmds):

sr = status_results[i]
if sr. cmd_status ! = 2:

jobsLeft = True
break

results[i] = sr. result

if not jobsLeft:
finished = True
continue

print "Have jobs to do"

# Check the number of threads inside the loop in case more
# threads are created during the loop
nthreads = len(self. client_threads)

print "Currently have %d threads to work with" % nthreads

# If the index points at the last thread go back to the
# first thread.
if ithread == nthreads:

ithread = 0

print "Using thread index %d" % ithread

# If the index points at the last cmd go back to the first cmd.
if icmd == ncmds:

icmd = 0

print "Checking cmd index %d" % icmd

# Check if this cmd has been submitted or not. If the
# command has already been submitted skip to the next
# command.
if status_results[icmd] . cmd_status ! = 0:

print "Command %d has status %d" % (icmd, status_results[icmd] . cmd_status)
icmd = icmd + 1
continue

print "Searching for an idle thread"

# Find an idle thread
foundThread = False
while not foundThread:

# Check the number of threads inside the loop in case more
# threads are created during the loop
nthreads = len(self. client_threads)

# Keep looping round and round.
if ithread == nthreads:

ithread = 0



34

The evaluate function takes a list of commands and returns a list of floating point numbers which correspond to each
command. The function performs the calculations by passing each command to a client process.

The evaluate function waits until a least one client thread has connected. Once one client has connected a while loop is
used to evaluate each of the commands. The commands are given an associated status code of zero, which is set to one if
the command is being evaluated or two if the command has been evaluated. To prevent a tight loop and an associated high
use of CPU on the computer running the BatchCalculator, a sleep statement is used within several of the loops. There
are a lot of print statements to show how the function works.

If a client process connects to the server while some commands are being evaluated, then it will be added to the pool of
available clients. Therefore, the speed of calculation will increase as more clients connect. The evaluate function waits
for one of the associated threads to become available and passes it a command. When a command has been evaluated the
result is stored in the status_results list and then copied into the results list. The status_results list is of type
StatusResult, which is mutable. Therefore, the client_threads function is passed a pointer to the element of the list,
can write the results into it, and set the command status.

Testing the BatchCalculator

While the launchBatchClient. py program from the last tutorial in Issue 13 can be used to start the clients, the server
program launchBatchCalculator. py needs to be updated to pass a list of commands to the evaluate function of the
BatchCalculator. Look back at the first article in this series and see how the commands were passed to the
FunctionCalculator. py. Then try to numerically solve,

y = 4*x**4 - (x - 4)**3/(6-x)**2 + x

for the value of x when y is 10. Choose 100 values of x at random between -1000 and 1000. Pass these equations to the
BatchCalculator. Pick the best two points and select another 100 values for x within the second range. Repeat the
procedure until a solution is found. While this calculation will run slower than using a single Raspberry Pi, the problem will
demonstrate how to use the BatchCalculator. The solution to the problem will be given next time.

self. client_threads[ithread] . processingCmd(). wait(1) # wait until finished or 1 sec.
if not self. client_threads[ithread] . processingCmd(). isSet():

foundThread = True
else:

ithread = ithread + 1
time. sleep(1)

# If there are no available threads
if not foundThread:

print "All threads are busy processing commands. "
time. sleep(2)
continue

# Submit the command and the target list element
print "icmd %d" % icmd
sr = status_results[icmd]
self. client_threads[ithread] . evaluate(cmds[icmd] , sr)

# Go to the next command
icmd = icmd + 1

# For debugging
print "results = %s" % results

return results



To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

June's Winners!
The winner of a new 51 2MB Raspberry Pi Model B plus PCSL PiAngle case and GPIO

Cobbler kit is Surajpal Singh (Bristol, UK).

The 2nd and 3rd prize winners of a PCSL PiAngle case are James Duffell (Preston, UK) and

Kobitharun Kunasekaran (Scarborough, UK).

Congratulations. We wil l be email ing you soon with detai ls of how to claim your prizes!

This month there is one MASSIVE prize!

The winner wil l receive a new Raspberry Pi

51 2MB Model B, an exclusive Whiteberry

PCSL case, 1 A PSU, HDMI cable, 1 6GB

NOOBS memory card, GPIO Cobbler kit,

breadboard and jumper wires!

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th July 201 3.

Winners wil l be notified in next month's

magazine and by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

JULY COMPETITION

35

http://www.pcslshop.com/info/magpi
http://www.pcslshop.com


The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time
Friday June 1 4, 201 3. Escondido,

California, USA. I got my

magazines today! Hooray Hooray

Hooray!

Homer Hazel

Wow! – what an incredibly

professional production!

I have downloaded the 1 3 issues

and have ploughed through the

first two. As a retired IT teacher,

this is just what we need and it is

presented in such a way that

anyone can get something out of it

– young and old. My Pi takes me

back to my Acorn Atom days and

a soldering iron, and it is good to

see young students taking this up

again. I am currently working with

a Year 7 young lady doing some

programming and simple control

circuits, and she is loving it – well ,

we both are, real ly!

I spend my life writing a complex

engineering program in

PowerBASIC – if only this was

avai lable for Linux (and it is not for

the want of asking) – and getting

to grips with the syntax of Python

has been an interesting chal lenge.

My only feeble complaint is that

setting up a printer is a nightmare!

I can get it to print from

LibreOffice, but not the command

prompt, though I am sure that the

answer wil l be in the issues I have

not looked at yet.

I t is good to see Britain leading

the world again in the field of

microcomputers – well done Pi.

Iain Johnstone

[Ed: See issue 12 for command

line printing]

288 pages of goodness just

arrived. The mags look awesome,

love the binder and stickers!

I ts been a bit of a wait but its

definitely been worth it! The whole

bundle is fantastic and the

magazine quality is perfect. They

look and feel l ike a premium

magazine you would buy from a

newsagents. You can see right

away the hard work that has gone

into these and it is very much

appreciated.

THANK YOU! ! to the whole

MagPi team! ! Time to crack on

and start reading!

Nial Pearce

First of al l . GREAT magazine!

Thanks for taking the risks to get

it out there in the first instance. I

bought the issues as soon as I

saw I could and they turned up

today (YAY! ! )

Chris Burgess

Just received my binder and

mags - they look great!

Thanks for al l the effort you have

put into this. And you just know

that we all want Volume 2 now

don't you :-)

Mark Pearson

[Ed: All Volume 2 issues to date

will be available soon]

Just received my magazines and

binder today. Wow! They are

beautiful .

This whole project has been

great. I had selected the

Signature Kit and am I ever glad.

The hardware kit came some time

ago and the whole thing was top

quality. I t meant a lot to have

those books signed by Liz and

Eben. Congratulations for a well

executed project.

Tony Guerich


